--- configs: - config_name: expression_HEK data_files: - split: train path: "expression_level/HEK_10fold_cv_split.tsv" - config_name: expression_Muscle data_files: - split: train path: "expression_level/Muscle_10fold_cv_split.tsv" - config_name: expression_pc3 data_files: - split: train path: "expression_level/pc3_10fold_cv_split.tsv" - config_name: translation_efficiency_HEK data_files: - split: train path: "translation_efficiency/HEK_10fold_cv_split.tsv" - config_name: translation_efficiency_Muscle data_files: - split: train path: "translation_efficiency/Muscle_10fold_cv_split.tsv" - config_name: translation_efficiency_pc3 data_files: - split: train path: "translation_efficiency/pc3_10fold_cv_split.tsv" - config_name: modification_site data_files: - split: train path: "modification_site_prediction/train.tsv" - split: validation path: "modification_site_prediction/valid.tsv" - split: test path: "modification_site_prediction/test.tsv" - config_name: ncrna_family_bnoise0 data_files: - split: train path: "ncrna_family_classification/bnoise0/train.tsv" - split: validation path: "ncrna_family_classification/bnoise0/valid.tsv" - split: test path: "ncrna_family_classification/bnoise0/test.tsv" - config_name: ncrna_family_bnoise200 data_files: - split: train path: "ncrna_family_classification/bnoise200/train.tsv" - split: validation path: "ncrna_family_classification/bnoise200/valid.tsv" - split: test path: "ncrna_family_classification/bnoise200/test.tsv" - config_name: protein_abundance_athaliana data_files: - split: train path: "protein_abundance/athaliana_5fold_cv_split.tsv" - config_name: protein_abundance_dmelanogaster data_files: - split: train path: "protein_abundance/dmelanogaster_5fold_cv_split.tsv" - config_name: protein_abundance_ecoli data_files: - split: train path: "protein_abundance/ecoli_5fold_cv_split.tsv" - config_name: protein_abundance_hsapiens data_files: - split: train path: "protein_abundance/hsapiens_5fold_cv_split.tsv" - config_name: protein_abundance_scerevisiae data_files: - split: train path: "protein_abundance/scerevisiae_5fold_cv_split.tsv" - config_name: splice_site_acceptor data_files: - split: train path: "splice_site_prediction/acceptor/train.tsv" - split: validation path: "splice_site_prediction/acceptor/valid.tsv" - split: test_danio path: "splice_site_prediction/acceptor/test_Danio.tsv" - split: test_fly path: "splice_site_prediction/acceptor/test_Fly.tsv" - split: test_thaliana path: "splice_site_prediction/acceptor/test_Thaliana.tsv" - split: test_worm path: "splice_site_prediction/acceptor/test_Worm.tsv" - config_name: splice_site_donor data_files: - split: train path: "splice_site_prediction/donor/train.tsv" - split: validation path: "splice_site_prediction/donor/valid.tsv" - split: test_danio path: "splice_site_prediction/donor/test_Danio.tsv" - split: test_fly path: "splice_site_prediction/donor/test_Fly.tsv" - split: test_thaliana path: "splice_site_prediction/donor/test_Thaliana.tsv" - split: test_worm path: "splice_site_prediction/donor/test_Worm.tsv" - config_name: transcript_abundance_athaliana data_files: - split: train path: "transcript_abundance/athaliana_5fold_cv_split.tsv" - config_name: transcript_abundance_dmelanogaster data_files: - split: train path: "transcript_abundance/dmelanogaster_5fold_cv_split.tsv" - config_name: transcript_abundance_ecoli data_files: - split: train path: "transcript_abundance/ecoli_5fold_cv_split.tsv" - config_name: transcript_abundance_hsapiens data_files: - split: train path: "transcript_abundance/hsapiens_5fold_cv_split.tsv" - config_name: transcript_abundance_hvolcanii data_files: - split: train path: "transcript_abundance/hvolcanii_5fold_cv_split.tsv" - config_name: transcript_abundance_ppastoris data_files: - split: train path: "transcript_abundance/ppastoris_5fold_cv_split.tsv" - config_name: transcript_abundance_scerevisiae data_files: - split: train path: "transcript_abundance/scerevisiae_5fold_cv_split.tsv" - config_name: mean_ribosome_load data_files: - split: train path: "mean_ribosome_load/train.tsv" - split: validation path: "mean_ribosome_load/validation_random7600.tsv" - split: test path: "mean_ribosome_load/test_human7600.tsv" --- # AIDO.RNA Benchmark Datasets ## mRNA related tasks * Translation efficiency prediction from Chu et al.(2024) [1] * 3 cell lines: Muscle, pc3, HEK * input sequence: 5'UTR * 10-fold cross-validation split * mRNA expression level prediction from Chu et al.(2024) [1] * 3 cell lines: Muscle, pc3, HEK * input sequence: 5'UTR * 10-fold cross-validation split * Mean ribosome load prediction from Sample et al. (2019) [2] * input sequence: 5'UTR * ouput: mean ribosome load * the original data source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002 * Similar to the previous studies [2, 4], we also split the data into the following three * train: total 76.3k samples * val: total 7600 samples (also called as Random 7600 in [4]) * test: total 7600 samples (also called as Human 7600 in [4]) * Transcript abundance prediction from Outeiral and Deane (2024) [3] * 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris * input sequence: CDS * 5-fold cross-validation split * Protein abundance prediction from Outeiral and Deane (2024) [3] * 5 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, and S. cerevisiae * input sequence: CDS * 5-fold cross-validation split * Note: We have transformed the label to logarithm space using the following function: `log(1+x)`. ## RNA function prediction tasks The datasets listed below are collected following the setting in Wang et al. (2023) [4]. * Cross-species splice site prediction * 2 datasets: acceptor, donor * 4 test species: zebrafish, fruit fly, worm, and plant * input sequence: pre-mRNA fragment * ncRNA family classification * 2 datasets: boundary noise 0, boundary noise 200 * input sequence: small noncoding RNA with different level of boundary noise * RNA modification site prediction * 12 labels (modification sites): Am, Cm, Gm, Tm, m1A, m5C, m5U, m6A, m6Am, m7G, Φ, and I. ## Reference 1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024. 2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019. 3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024. 4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.