fesevu commited on
Commit
1f94ea7
Β·
verified Β·
1 Parent(s): d9f5e1c

+ part of dataset

Browse files
README.md CHANGED
@@ -1,3 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
1
+ # πŸ•Έ Ethereum Address Behavior Dataset β€” GNN + LSTM (Fraud Detection)
2
+
3
+ This dataset is designed for **fraud detection on Ethereum addresses** using a **dual-modality approach**:
4
+ - **Graph Neural Networks (GNN):** transaction graph structure.
5
+ - **Recurrent Models (LSTM/Transformers):** time-series of address features.
6
+
7
+ The dataset is built from:
8
+ - **Ethereum public BigQuery dataset** (`bigquery-public-data.crypto_ethereum.transactions`).
9
+ - **Etherscan labels + custom scam labels**.
10
+ - **Balanced address list** of ~115k addresses (scam vs non-scam, contracts vs EOAs).
11
+
12
+ ## πŸ“¦ Dataset Collection Pipeline
13
+
14
+ To reproduce or customize the dataset, use the instructions and code in the [eth-fraud-dataset-pipeline repository](https://github.com/fesevu/eth-fraud-dataset-pipeline).
15
+ That repository provides:
16
+ - Scripts for downloading raw data from public sources (BigQuery, Etherscan, curated scam lists).
17
+ - Code for merging, deduplicating, and balancing address labels.
18
+ - Tools for building the GNN and LSTM datasets (parquet files, mappings, targets).
19
+ - Utilities for generating checksums and manifests for data integrity.
20
+
21
+ **You must run the provided scripts to generate the dataset locally; the data files are not stored in the GitHub repository.**
22
+
23
  ---
24
+
25
+ ## πŸ“‚ Repository Structure
26
+
27
+ final/
28
+ β”œβ”€ gnn_dataset/ # GNN dataset (edges, meta, labels, mapping, targets)
29
+ β”‚ β”œβ”€ edges_all/edges.parquet
30
+ β”‚ β”œβ”€ edges_by_week/week=YYYY-Www/edges.parquet
31
+ β”‚ β”œβ”€ edges_by_month/month=YYYY-MM/edges.parquet
32
+ β”‚ β”œβ”€ meta/{week,month}_window_meta.parquet
33
+ β”‚ β”œβ”€ labels/targets_global.parquet
34
+ β”‚ β”œβ”€ mapping/address_id_map_labels.parquet
35
+ β”‚ β”œβ”€ targets/{week,month}_targets.parquet
36
+ β”‚ └─ README.md
37
+ └─ lstm_dataset/ # LSTM dataset (daily β†’ weekly β†’ monthly aggregations)
38
+ β”œβ”€ daily_filtered.parquet
39
+ β”œβ”€ weekly.parquet
40
+ β”œβ”€ monthly.parquet
41
+ └─ README.md
42
+
43
+ - `gnn_dataset/` β†’ GNN dataset (graph edges, slices, labels, mapping).
44
+ - `lstm_dataset/` β†’ LSTM dataset (tabular features, time-series).
45
+
46
+ ---
47
+
48
+ ## πŸ”‘ Synchronization Between GNN and LSTM
49
+
50
+ - Both use the same **address universe** (`node_id` mapping).
51
+ - Both use the same **time windows**:
52
+ - ISO weeks (`YYYY-Www`) from `gnn_dataset/meta/week_window_meta.parquet`.
53
+ - Months (`YYYY-MM`) from `gnn_dataset/meta/month_window_meta.parquet`.
54
+
55
+ ---
56
+
57
+ ## πŸ“‚ Raw Data
58
+
59
+ Alongside the processed datasets, we also provide the **raw parquet exports** (all parquet files are compressed with **Zstandard (zstd)**):
60
+
61
+ final/
62
+ β”œβ”€ GNN/parquet/ # raw transaction parquet chunks for GNN
63
+ β”‚ β”œβ”€ transactions_daily_part-00000.parquet
64
+ β”‚ β”œβ”€ transactions_daily_part-00001.parquet
65
+ β”‚ └─ ...
66
+ β”œβ”€ LSTM/parquet/ # raw daily features parquet for LSTM
67
+ β”‚ β”œβ”€ daily_final_part-00000.parquet
68
+ β”‚ β”œβ”€ daily_final_part-00001.parquet
69
+ β”‚ └─ ...
70
+ β”œβ”€ addr_labels_balanced.csv # balanced address list with labels
71
+ β”œβ”€ addr_labels_balanced.csv # balanced subset with labels (used in GNN + LSTM)
72
+
73
+ ---
74
+
75
+ ### Contents
76
+ - **`GNN/parquet/`** β€” raw transaction-level parquet files, containing:
77
+ - `from_address`, `to_address` (STRING, lowercase hex)
78
+ - `block_number` (INT64)
79
+ - `timestamp` (TIMESTAMP, UTC)
80
+ - `value_wei`, `tx_fee_wei` (NUMERIC in source, stored as string later)
81
+ - `nonce`, `input_data_size`, `contract_creation`, `tx_hash`, `day`
82
+ - **`LSTM/parquet/`** β€” raw daily activity parquet files (address-day features before filtering).
83
+ - **`addr_labels_big.csv`** β€” initial large list of Ethereum addresses (>1M), with scam/contract metadata, **not used directly** (later downsampled & balanced).
84
+ - **`addr_labels_balanced.csv`** β€” final balanced list of ~115k addresses (scam vs non-scam, contract vs EOA), used for both **GNN** and **LSTM** datasets.
85
+
86
+ All parquet files in this dataset are compressed using **Zstandard (zstd)** for efficient storage and fast access.
87
+
88
+ These files are the **starting point** for the preparation scripts:
89
+ - `build_unified_dataset.py` β†’ creates `gnn_dataset/` (GNN).
90
+ - `build_lstm_dataset_lowmem.py` β†’ creates `lstm_dataset/` (LSTM).
91
+
92
+ ---
93
+
94
+ ## βš–οΈ Labels
95
+
96
+ - Source: Etherscan tags + curated scam lists.
97
+ - Balanced across:
98
+ - **Scam vs Non-Scam**
99
+ - **Contract vs EOA**
100
+ - Provided in:
101
+ - `gnn_dataset/labels/targets_global.parquet`
102
+ - `gnn_dataset/mapping/address_id_map_labels.parquet`
103
+
104
+ ---
105
+
106
+ ### Address Label Files
107
+
108
+ Both `addr_labels_big.csv` (full set) and `addr_labels_balanced.csv` (balanced subset) share the same schema:
109
+
110
+ | Field | Type | Units | Description |
111
+ |--------------------|----------|-------|-------------|
112
+ | address | STRING | hex | Ethereum address (0x..., lowercase). |
113
+ | is_scam | INT64 | 0/1 | Scam label: 1 = scam, 0 = non-scam. |
114
+ | description | STRING | β€” | Free-text description (e.g. "Verified", "Phishing"). |
115
+ | activity_start_ts | TIMESTAMP| UTC | First observed activity timestamp. |
116
+ | activity_end_ts | TIMESTAMP| UTC | Last observed activity timestamp. |
117
+ | is_contract | INT64 | 0/1 | Address type: 1 = smart contract, 0 = EOA. |
118
+
119
+ - **`addr_labels_big.csv`** β€” ~1M+ raw addresses with scam/contract metadata, **not used directly** (later downsampled and balanced).
120
+ - **`addr_labels_balanced.csv`** β€” final balanced subset (~115k addresses, scam vs non-scam, contract vs EOA), used in both **GNN** and **LSTM** datasets.
121
+
122
+ ---
123
+
124
+ ## πŸ“¦ Use Cases
125
+
126
+ - **Graph ML:** Train static embeddings (GraphSAGE, Node2Vec) or temporal GNNs.
127
+ - **Sequence ML:** Train LSTM/Transformer on address time-series features.
128
+ - **Fusion:** Combine GNN embeddings and LSTM features via `node_id`.
129
+ - **Fraud detection:** Predict scam addresses, contracts vs EOAs.
130
+
131
+ ---
132
+
133
+ ## πŸ›  Collection Details
134
+
135
+ - Source: Ethereum mainnet via BigQuery.
136
+ - Labels: from Etherscan + custom curated lists.
137
+ - Timezone: UTC.
138
+ - ETH amounts stored as Decimal(38,9), exported as strings for precision.
139
+ - Data preparation optimized for BigQuery + Polars, fits in 12–24 GB RAM.
140
+
141
+ ## πŸ”’ Integrity
142
+ - All files are checksummed (SHA256, optional MD5).
143
+ - See `CHECKSUMS.md` for a human-readable table.
144
+ - See `manifest.jsonl` for a machine-readable log (size, mtime, checksums).
145
+ - To verify after download:
146
+ ```bash
147
+ python3 make_checksums.py --verify --base /path/to/final
148
+
149
+ ## πŸ—‚ Source Datasets
150
+
151
+ The address list and labels (scam/non-scam, description) were compiled from the following public datasets:
152
+
153
+ - **Primary sources:**
154
+ - [xblock.pro Dataset #13](https://xblock.pro/#/dataset/13)
155
+ - [xblock.pro Dataset #25](https://xblock.pro/#/dataset/25)
156
+ - [xblock.pro Dataset #50](https://xblock.pro/#/dataset/50)
157
+ - [PTXPhish](https://github.com/blocksecteam/PTXPhish/tree/main?tab=readme-ov-file)
158
+ - [Phishing Contract Sigmetrics](https://github.com/blocksecteam/phishing_contract_sigmetrics25/tree/main)
159
+ - [Etherscan Open Source Contract Codes](https://etherscan.io/exportData?type=open-source-contract-codes)
160
+ - [MyEtherWallet Ethereum Lists](https://github.com/MyEtherWallet/ethereum-lists)
161
+ - [EtherScamDB](https://github.com/MrLuit/EtherScamDB/tree/master)
162
+ - [CryptoScamDB Blacklist](https://github.com/CryptoScamDB/blacklist)
163
+ - [ScamSniffer Scam Database](https://github.com/scamsniffer/scam-database)
164
+ - [Forta Network Labelled Datasets](https://github.com/forta-network/labelled-datasets)
165
+ - [Kaggle: Labelled Ethereum Addresses](https://www.kaggle.com/datasets/hamishhall/labelled-ethereum-addresses?select=eth_addresses.csv)
166
+ - [Etherscan Labels](https://github.com/brianleect/etherscan-labels/tree/main/data/etherscan/combined)
167
+ - [Kaggle: Ethereum Fraud Detection Dataset](https://www.kaggle.com/datasets/vagifa/ethereum-frauddetection-dataset/data)
168
+ - [Ethereum Fraud Datasets](https://github.com/surajsjain/ethereum-fraud-datasets/tree/main)
169
+ - [Kaggle: Ponzi Scheme Contracts](https://www.kaggle.com/datasets/polarwolf/ponzi-scheme-contracts-on-ethereum)
170
+ - [Ethereum Fraud Detection](https://github.com/eltontay/Ethereum-Fraud-Detection)
171
+
172
+ - **Integration:**
173
+ - Addresses and labels from these sources were merged and deduplicated.
174
+ - The final balanced address list (~115k addresses) was constructed based on these datasets.
175
+
176
  ---
addr_labels_balanced.csv.zst ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52941005bd44d2597037e2e1c932e4d25fcf9c855980f442896cb497d1827b39
3
+ size 3851967
addr_labels_big.csv.zst ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15637e4bcfc73856c8f9e0f5c2e35ac63bae33347651f99641fdc22d881a2c5f
3
+ size 100475757
lstm_dataset/README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # πŸ•Έ Ethereum Transaction Graph Dataset (GNN)
2
+
3
+ This dataset represents **Ethereum transactions as edges** between addresses.
4
+ It is designed for Graph Neural Networks (GNN), both **static embeddings** and **temporal graph learning**.
5
+ The dataset contains 2-hop graphs, i.e., it includes neighbors of neighbors for each address.
6
+
7
+ ---
8
+
9
+ ## πŸ“‘ Contents
10
+
11
+ - `edges_all/edges.parquet` β€” all transactions (full edge list).
12
+ - `edges_by_week/week=YYYY-Www/edges.parquet` β€” weekly slices.
13
+ - `edges_by_month/month=YYYY-MM/edges.parquet` β€” monthly slices.
14
+ - `meta/{week,month}_window_meta.parquet` β€” time window ranges and statistics.
15
+ - `labels/targets_global.parquet` β€” labeled addresses `(node_id, is_scam, is_contract, address)`.
16
+ - `mapping/address_id_map_labels.parquet` β€” `(address, node_id)` mapping.
17
+ - `targets/{week,month}_targets.parquet` β€” labeled nodes active in each window.
18
+
19
+ ---
20
+
21
+ ## πŸ”‘ Edge Schema
22
+
23
+ | Field | Type | Units | Description |
24
+ |------------------|--------|----------|-------------|
25
+ | src_id | UInt64 | β€” | Source node ID (hash of lowercase Ethereum address). |
26
+ | dst_id | UInt64 | β€” | Destination node ID (hash of lowercase Ethereum address). |
27
+ | ts | Int64 | seconds | Unix timestamp of the transaction (UTC). |
28
+ | value_wei | STRING | wei | Transaction value in wei (exact decimal stored as string). |
29
+ | tx_fee_wei | STRING | wei | Transaction fee in wei (exact decimal stored as string). |
30
+ | block_number | Int64 | block | Ethereum block number of the transaction. |
31
+ | contract_creation| Bool | β€” | True if transaction created a smart contract. |
32
+ | tx_hash | STRING | hex | Unique transaction hash. |
33
+
34
+ ---
35
+
36
+ ## Notes
37
+
38
+ - Transactions are **not filtered**: all edges included.
39
+ - **Supervision**: loss computed only on labeled addresses.
40
+ - **Dynamic GNN**: use `edges_by_week/` or `edges_by_month/`.
41
+ - **Static embeddings**: use `edges_all/edges.parquet`.
lstm_dataset/daily_filtered.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91772ae11d8167b3aa6920f15f0388e67505b138e8f4d257c3d99734f12559b8
3
+ size 514964942
lstm_dataset/monthly.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c16d21902080684db4afee5f7585fa795b951ef0a97be774b794d7bde5cc7eb4
3
+ size 28464647
lstm_dataset/weekly.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63f42c5e47185ea9efa182ecbcd2642dad46232918981374e812ff352c25e5d
3
+ size 67457678