--- size_categories: - 1M small

Similar fashion to [Simo's Imagenet.int8](https://github.com/cloneofsimo/imagenet.int8), here we provide [Cosmos-tokenized](https://github.com/NVIDIA/Cosmos-Tokenizer) imagenet for rapid prototyping. Noticeably, the discrete tokenizer is able to compress entire imagenet into **shocking 2.45 GB of data!** # How to use This time, we dumped it all on simple pytorch safetensor format. ```python import torch import torch.nn as nn from safetensors.torch import safe_open # for continuous tokenizer with safe_open("tokenize_dataset/imagenet_ci8x8.safetensors", framework="pt") as f: data = f.get_tensor("latents") * 16.0 / 255.0 labels = f.get_tensor("labels") print(data.shape) # 1281167, 16, 32, 32 print(labels.shape) # 1281167 ``` To decode, you would need to install cosmos tokenizer. ```bash git clone https://github.com/NVIDIA/Cosmos-Tokenizer.git cd Cosmos-Tokenizer apt-get install -y ffmpeg pip install -e . ``` And decode using either `"Cosmos-Tokenizer-CI8x8"` or `"Cosmos-Tokenizer-DI8x8"` **IMPORTANT** * For continuous token, we've quantized & normalized to int8 format. Thus, you need to multiply 16.0 / 255.0 * For discrete token, saved format is int16. To use it properly just do uint16. Example below: ```python model_name = "Cosmos-Tokenizer-CI8x8" if is_continuous else "Cosmos-Tokenizer-DI8x8" decoder = ImageTokenizer( checkpoint_dec=f"pretrained_ckpts/{model_name}/decoder.jit" ).to(device) with safe_open("imagenet_ci8x8.safetensors", framework="pt") as f: if tokenizer_type == "continuous": data = f.get_tensor("latents").to(torch.bfloat16) * 16.0 / 255.0 else: data = f.get_tensor("indices").to(torch.uint16) labels = f.get_tensor("labels") data = data[:1] if is_continuous: data = data.reshape(1, 16, 32, 32).to(device) else: # For discrete tokenizer, reshape to [1, 32, 32] data = data.reshape(1, 32, 32).to(device).long() # Decode the image with torch.no_grad(): reconstructed = decoder.decode(data) img = ( ((reconstructed[0].cpu().float() + 1) * 127.5).clamp(0, 255).to(torch.uint8) ) img = img.permute(1, 2, 0).numpy() img = Image.fromarray(img) ```