fakebr / README.md
ju-resplande's picture
Update README.md
43aebf5 verified
|
raw
history blame
2.06 kB
---
pretty_name: Fake.br
task_categories:
- text-classification
language:
- pt
language_details: pt-BR
size_categories:
- 1K<n<10K
multilinguality:
- monolingual
language_creators:
- found
---
# Fake.br
## Dataset Description
- **Homepage:**
- **Repository:** [https://github.com/roneysco/Fake.br-Corpus/](https://github.com/roneysco/Fake.br-Corpus/)
- **Paper:** [https://sites.icmc.usp.br/taspardo/OpenCor2018-SantosEtAl.pdf](https://sites.icmc.usp.br/taspardo/OpenCor2018-SantosEtAl.pdf)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
Fake.Br Corpus is composed of aligned true and fake news written in Brazilian Portuguese.
### Supported Tasks and Leaderboards
The task is text classification of news content.
### Languages
The dataset is in Portuguese.
### Citation Information
If you use "Fake.br Dataset", please include a citation to the project website and the corresponding paper published in PROPOR 2018 conference:
```bibtex
@InProceedings{fakebr:18,
author={Monteiro, Rafael A. and Santos, Roney L. S. and Pardo, Thiago A. S. and de Almeida, Tiago A. and Ruiz, Evandro E. S. and Vale, Oto A.},
title={Contributions to the Study of Fake News in Portuguese: New Corpus and Automatic Detection Results},
booktitle={Computational Processing of the Portuguese Language},
year={2018},
publisher={Springer International Publishing},
pages={324--334},
isbn={978-3-319-99722-3},
}
```
or the paper published in Expert Systems with Applications:
```bibtex
@article{silva:20,
title = "Towards automatically filtering fake news in Portuguese",
journal = "Expert Systems with Applications",
volume = "146",
pages = "113199",
year = "2020",
issn = "0957-4174",
doi = "https://doi.org/10.1016/j.eswa.2020.113199",
url = "http://www.sciencedirect.com/science/article/pii/S0957417420300257",
author = "Renato M. Silva and Roney L.S. Santos and Tiago A. Almeida and Thiago A.S. Pardo",
}
```
### Contributions
Thanks to [@ju-resplande](https://github.com/ju-resplande) for adding this dataset.