# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Large-scale Indonesian Summarization Dataset""" from __future__ import absolute_import, division, print_function import glob import json import os import re from pathlib import Path import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """\ @inproceedings{id_liputan6, author = {Fajri Koto, Jey Han Lau, Timothy Baldwin}, title = {Liputan6: A Large-scale Indonesian Dataset for Text Summarization}, year = {2020}, url = {https://arxiv.org/abs/2011.00679}, } """ _DESCRIPTION = """\ In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL, an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive summarization models. """ _HOMEPAGE = "https://arxiv.org/abs/2011.00679" _LICENSE = "" class IdLiputan6Config(datasets.BuilderConfig): """BuilderConfig for IdLiputan6""" def __init__(self, **kwargs): """BuilderConfig for IdLiputan6. Args: **kwargs: keyword arguments forwarded to super. """ super(IdLiputan6Config, self).__init__(**kwargs) class IdLiputan6(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ IdLiputan6Config( name="canonical", version=VERSION, description="Canonical Liputan6 dataset", ), IdLiputan6Config( name="xtreme", version=VERSION, description="Xtreme Liputan6 dataset", ), ] @property def manual_download_instructions(self): return """\ You need to manually request the liputan6 dataset using the form in https://github.com/fajri91/sum_liputan6/ and uncompress it. The liputan6 dataset can then be loaded using the following command `datasets.load_dataset("id_liputan6", 'canonical', data_dir="")` or `datasets.load_dataset("id_liputan6", 'xtreme', data_dir="")`. """ def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "url": datasets.Value("string"), "clean_article": datasets.Value("string"), "clean_summary": datasets.Value("string"), "extractive_summary": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) if not os.path.exists(data_dir): raise FileNotFoundError( "{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('id_liputan6', " "'canonical', data_dir=...)`. Manual download instructions:\n{}".format( data_dir, self.manual_download_instructions ) ) split_generators = [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "article_dir": os.path.join(data_dir, "{}/dev".format(self.config.name)), "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "article_dir": os.path.join(data_dir, "{}/test".format(self.config.name)), "split": "test", }, ), ] if self.config.name == "canonical": split_generators.append( datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "article_dir": os.path.join(data_dir, "{}/train".format(self.config.name)), "split": "train", }, ) ) return split_generators def _generate_examples(self, article_dir, split): detokenizers = [ [re.compile(r"([Ll])iputan6 . com "), r"\1iputan6.com"], [re.compile(r" ([.,:])"), r"\1"], [re.compile(r"\( ([^)]+) \)"), r"(\1)"], [re.compile(r"\" ([^\"]+) \""), r'"\1"'], [re.compile(r"\[ ([^]]+) ]"), r"[\1]"], ] logger.info("⏳ Generating %s examples from = %s", split, article_dir) guid = 0 for path in sorted( glob.glob(os.path.join(article_dir, "**/*.json"), recursive=True), key=lambda p: int(Path(p).stem) ): with open(path, encoding="utf-8") as f: data = json.load(f) clean_article = " ".join([" ".join(i) for i in data["clean_article"]]) for d in detokenizers: clean_article = d[0].sub(d[1], clean_article) clean_summary = " ".join([" ".join(i) for i in data["clean_summary"]]) for d in detokenizers: clean_summary = d[0].sub(d[1], clean_summary) extractive_summary = " ".join([" ".join(data["clean_article"][i]) for i in data["extractive_summary"]]) for d in detokenizers: extractive_summary = d[0].sub(d[1], extractive_summary) yield guid, { "id": str(data["id"]), "url": data["url"], "clean_article": clean_article, "clean_summary": clean_summary, "extractive_summary": extractive_summary, } guid += 1