# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """XNLI: The Cross-Lingual NLI Corpus.""" from __future__ import absolute_import, division, print_function import collections import csv import os import six import datasets _CITATION = """\ @InProceedings{conneau2018xnli, author = {Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin}, title = {XNLI: Evaluating Cross-lingual Sentence Representations}, booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}, year = {2018}, publisher = {Association for Computational Linguistics}, location = {Brussels, Belgium}, }""" _DESCRIPTION = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ _DATA_URL = "https://www.nyu.edu/projects/bowman/xnli/XNLI-1.0.zip" _LANGUAGES = ("ar", "bg", "de", "el", "en", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh") class Xnli(datasets.GeneratorBasedBuilder): """XNLI: The Cross-Lingual NLI Corpus. Version 1.0.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="plain_text", version=datasets.Version("1.0.0", ""), description="Plain text import of XNLI", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "premise": datasets.features.Translation( languages=_LANGUAGES, ), "hypothesis": datasets.features.TranslationVariableLanguages( languages=_LANGUAGES, ), "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), } ), # No default supervised_keys (as we have to pass both premise # and hypothesis as input). supervised_keys=None, homepage="https://www.nyu.edu/projects/bowman/xnli/", citation=_CITATION, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(_DATA_URL) data_dir = os.path.join(dl_dir, "XNLI-1.0") return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")} ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" rows_per_pair_id = collections.defaultdict(list) with open(filepath, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in reader: rows_per_pair_id[row["pairID"]].append(row) for rows in six.itervalues(rows_per_pair_id): premise = {row["language"]: row["sentence1"] for row in rows} hypothesis = {row["language"]: row["sentence2"] for row in rows} yield rows[0]["pairID"], { "premise": premise, "hypothesis": hypothesis, "label": rows[0]["gold_label"], }