# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """The Adversarial NLI Corpus.""" from __future__ import absolute_import, division, print_function import json import os import datasets _CITATION = """\ @InProceedings{nie2019adversarial, title={Adversarial NLI: A New Benchmark for Natural Language Understanding}, author={Nie, Yixin and Williams, Adina and Dinan, Emily and Bansal, Mohit and Weston, Jason and Kiela, Douwe}, booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", year = "2020", publisher = "Association for Computational Linguistics", } """ _DESCRIPTION = """\ The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset, The dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure. ANLI is much more difficult than its predecessors including SNLI and MNLI. It contains three rounds. Each round has train/dev/test splits. """ stdnli_label = { "e": "entailment", "n": "neutral", "c": "contradiction", } class ANLIConfig(datasets.BuilderConfig): """BuilderConfig for ANLI.""" def __init__(self, **kwargs): """BuilderConfig for ANLI. Args: . **kwargs: keyword arguments forwarded to super. """ super(ANLIConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs) class ANLI(datasets.GeneratorBasedBuilder): """ANLI: The ANLI Dataset.""" BUILDER_CONFIGS = [ ANLIConfig( name="plain_text", description="Plain text", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "uid": datasets.Value("string"), "premise": datasets.Value("string"), "hypothesis": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]), "reason": datasets.Value("string"), } ), # No default supervised_keys (as we have to pass both premise # and hypothesis as input). supervised_keys=None, homepage="https://github.com/facebookresearch/anli/", citation=_CITATION, ) def _vocab_text_gen(self, filepath): for _, ex in self._generate_examples(filepath): yield " ".join([ex["premise"], ex["hypothesis"]]) def _split_generators(self, dl_manager): downloaded_dir = dl_manager.download_and_extract("https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip") anli_path = os.path.join(downloaded_dir, "anli_v0.1") path_dict = dict() for round_tag in ["R1", "R2", "R3"]: path_dict[round_tag] = dict() for split_name in ["train", "dev", "test"]: path_dict[round_tag][split_name] = os.path.join(anli_path, round_tag, f"{split_name}.jsonl") return [ # Round 1 datasets.SplitGenerator(name="train_r1", gen_kwargs={"filepath": path_dict["R1"]["train"]}), datasets.SplitGenerator(name="dev_r1", gen_kwargs={"filepath": path_dict["R1"]["dev"]}), datasets.SplitGenerator(name="test_r1", gen_kwargs={"filepath": path_dict["R1"]["test"]}), # Round 2 datasets.SplitGenerator(name="train_r2", gen_kwargs={"filepath": path_dict["R2"]["train"]}), datasets.SplitGenerator(name="dev_r2", gen_kwargs={"filepath": path_dict["R2"]["dev"]}), datasets.SplitGenerator(name="test_r2", gen_kwargs={"filepath": path_dict["R2"]["test"]}), # Round 3 datasets.SplitGenerator(name="train_r3", gen_kwargs={"filepath": path_dict["R3"]["train"]}), datasets.SplitGenerator(name="dev_r3", gen_kwargs={"filepath": path_dict["R3"]["dev"]}), datasets.SplitGenerator(name="test_r3", gen_kwargs={"filepath": path_dict["R3"]["test"]}), ] def _generate_examples(self, filepath): """Generate mnli examples. Args: filepath: a string Yields: dictionaries containing "premise", "hypothesis" and "label" strings """ for idx, line in enumerate(open(filepath, "rb")): if line is not None: line = line.strip().decode("utf-8") item = json.loads(line) reason_text = "" if "reason" in item: reason_text = item["reason"] yield item["uid"], { "uid": item["uid"], "premise": item["context"], "hypothesis": item["hypothesis"], "label": stdnli_label[item["label"]], "reason": reason_text, }