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Abstract

Large language models (LLMs) have shown remarkable reasoning capabilities,
especially when prompted to generate intermediate reasoning steps (e.g., Chain-of-
Thought, CoT). However, LLMs can still struggle with problems that are easy for
humans, such as generating action plans for executing tasks in a given environment,
or performing complex math, logical, and commonsense reasoning. The deficiency
stems from the key fact that LLMs lack an internal world model to predict the world
state (e.g., environment status, intermediate variable values) and simulate long-term
outcomes of actions. This prevents LLMs from performing deliberate planning akin
to human brains, which involves exploring alternative reasoning paths, anticipating
future states and rewards, and iteratively refining existing reasoning steps. To
overcome the limitations, we propose a new LLM reasoning framework, Reasoning
via Planning (RAP). RAP repurposes the LLM as both a world model and a
reasoning agent, and incorporates a principled planning algorithm (based on Monto
Carlo Tree Search) for strategic exploration in the vast reasoning space. During
reasoning, the LLM (as agent) incrementally builds a reasoning tree under the
guidance of the LLM (as world model) and task-specific rewards, and obtains a
high-reward reasoning path efficiently with a proper balance between exploration
vs. exploitation. We apply RAP to a variety of challenging reasoning problems
including plan generation, math reasoning, and logical inference. Empirical results
on these tasks demonstrate the superiority of RAP over various strong baselines,
including CoT and least-to-most prompting with self-consistency. RAP on LLaMA-
33B surpasses CoT on GPT-4 with 33% relative improvement in a plan generation
setting.

1 Introduction

Large language models (LLMs) have exhibited emergent reasoning abilities in a wide range of
tasks [5, 10, 44, 2]. Recent approaches further boost their ability by prompting LLMs to generate
intermediate reasoning steps (e.g., Chain-of-Thought, CoT [59]) or answer a series of subquestions
(e.g., least-to-most prompting [66]). However, LLMs still face difficulties with tasks that humans
find easy. For example, in creating action plans to move blocks to a target state, GPT-3 [5] achieves a
success rate of only 1%, compared to 78% for humans [57]; these models also struggle when solving
complex tasks that require multiple steps of math, logical, or commonsense reasoning [65, 22, 41, 6].

Humans possess an internal world model, a mental representation of the environment [28, 27, 15],
which enables humans to simulate actions and their effects on the world’s state for deliberate planning
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Figure 1: An overview of Reasoning via Planning (RAP). Compared with previous LLM reasoning
methods like Chain-of-Thought [59], we explicitly model the world state from a world model
(repurposed from the language model), enabling us to leverage advanced planning algorithms to solve
the reasoning problems.
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Julie is reading… She wants to read half of the remaining 
pages tomorrow. How many pages should she read?
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…

(Answer: 42)

Figure 2: RAP for plan generation in Blocksworld (left) and math reasoning in GSM8K (right).

during complex tasks of motor control, imagery, inference, and decision making [54, 55, 4, 49, 17, 33].
For example, to make an action plan towards a goal, planning with the world model involves exploring
various alternative courses of actions, assessing the likely outcomes by rolling out possible future
scenarios, and iteratively refining the plan based on the assessment [25, 14, 52, 19, 48, 21]. This is
in stark contrast to the current LLM reasoning, which instinctively generates a reasoning trace in
an autoregressive manner. In particular, we identify several key limitations of the current reasoning
with LLMs, including (1) the lack of an internal world model to simulate the state of the world (e.g.,
the configuration of blocks, the values of intermediate variables), which is the foundation of human
planning; (2) the absence of a reward mechanism to assess and guide the reasoning towards the
desired state; and due to both of these limitations, (3) the incapability of balancing exploration vs.
exploitation to efficiently explore the vast reasoning space.

To address these limitations, this paper proposes a new framework, Reasoning via Planning (RAP),
that enables LLMs to reason in a manner close to humans’ conscious planning. RAP augments
the LLM with a world model, and reasons with principled planning (specifically Monte Carlo Tree
Search, MCTS) to produce high-reward reasoning traces after efficient exploration (Figure 1). Notably,
we acquire the world model by repurposing the LLM itself with appropriate prompts. During the
reasoning, the LLM strategically builds a reasoning tree by iteratively considering the most promising
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reasoning steps (actions) and using the world model (the same, repurposed LLM) to look ahead for
future outcomes. The estimated future rewards are then backpropagated to update the LLM’s beliefs
about the current reasoning steps, guiding it to refine the reasoning by exploring better alternatives.
Our MCTS-based planning effectively maintains a proper balance between exploration (of unvisited
reasoning traces) and exploitation (of the best reasoning steps identified so far).

We show RAP is a general framework applicable to a diverse range of challenging problems and
achieves substantial improvements over recent popular LLM reasoning methods. In Blocksworld
[57] for 2/4/6-step plan generation, RAP achieves an average success rate of 64% while CoT fails
almost completely. Moreover, LLaMA-33B with RAP surpasses GPT-4 with CoT by 33% relative
improvement. In math reasoning (GSM8K [11]) and logical inference (PrOntoQA [47]), RAP
also consistently improves over strong baselines, including CoT, least-to-most prompting, and their
self-consistency variants.

2 Related Work

Reasoning with LLMs. In the realm of LLMs [22, 41, 6], reasoning typically entails decomposing
complex questions into sequential intermediate steps (a.k.a. chains) before producing the final
answer, exemplified by Chain-of-Thought (CoT) prompting and its variants [43, 59, 32]. The basic
CoT approaches, which generate chains all at once, can induce additional errors as the step count
increases. One line of improvement methods involves sampling multiple chains and choosing the
best answer via majority voting, such as Self-Consistency [58]. Another line of work focuses on
decomposition, aiming to tackle the problem by solving multiple simple subproblems. For instance,
least-to-most prompting [66] reduces the question into subquestions and answers them sequentially.
More relevantly, similar to our reward formulation, some recent works have explored self-evaluation
approaches, which leverage LLMs themselves to provide feedback for intermediate steps and then
continue the reasoning [60, 51, 45]. For example, Paul et al. [45] fine-tune a critic model to provide
structured feedback iteratively in each step, and Madaan et al. [38] directly reuse the same LLM to
generate multi-aspect feedback and refine the previously generated output. Besides, aligned with
our state formulation, Li et al. [34] incorporates latent “situations” into LLMs, referring to the state
of entities from the context. Nevertheless, none of the above methods formally introduce the world
model and instantiates the reward and state into a unified framework.

Search-guided Reasoning with LLMs. Most of CoT approaches discussed above are based on a
linear reasoning structure. Self-consistency built onto CoT decodes multiple chains parallelly, but it
remains hard to explore the reasoning space sufficiently. Recent efforts have been made to investigate
non-linear reasoning structures by sampling more reasoning steps efficiently guided by some search
algorithms [30, 67, 63, 64]. For example, Jung et al. [30] generate a tree of explanations to enforce
logical consistency, and Xie et al. [63] adopt beam search to decode a better CoT reasoning chain.
More recently, CoRe [67] proposes to fine-tune both the reasoning step generator and verifier for
solving math word problems, also using MCTS for reasoning decoding. Concurrently to our work,
Yao et al. [64] apply heuristic-based approach, like depth-/breadth-first search, to search for better
reasoning paths. Compared with these search-guided methods, RAP is a more principled framework
that combines world model and reward within advanced MCTS planning. The RAP formulation of
LLM reasoning with state, action, and reward also presents a more general approach applicable to a
wide range of reasoning problems.

Planning with LLMs. Planning, a central ability in intelligent agents, involves generating a series
of actions to achieve a specific goal [40, 7]. Classical planning methods have been widely adopted
in robots and embodied environments [9, 42, 8, 61, 26]. Recently, prompting LLMs to do planning
direcly has gained attention and shown potential [24, 23, 53, 13, 35]. SayCan [1], for instance,
combines LLMs with affordance functions to generate feasible plans. Moreover, based on LLMs’
powerful programming ability [37, 29, 36], some recent works first translate natural language
instructions into the executable programming languages, such as Planning Domain Description
Language (PDDL), and runs classical planning algorithms, such as LLM+P [36]. However, code-
based planning is constrained by its narrow domains and the predefined environment, while RAP can
handle open domain problems, including numerical and logical reasoning (see Section 4.2 and 4.3).

World models and Planning. Traditional reinforcement learning (RL) heavily relies on interaction
with the environment (real world or simulators). To improve sample efficiency, previous research
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attempts to learn a world model that predicts state transition, and directly learn a policy within the
world model [16, 17]. With latent imagination in a world model, an RL agent can be trained to solve
long-horizon tasks [18, 20]. Besides, the world model is also shown to be helpful to physical robot
learning [62]. Recent years have witnessed successful applications of planning algorithms in RL [50],
such as AlphaZero [52], MuZero [48]. These algorithms are typically based on tree-structured search
and are designed to effectively maintain the balance of exploration and exploitation. In this paper, we
use LLMs as world models and apply a planning algorithm to search for a reasoning path. Combining
world model and planning, our framework is similar to model predictive control [8]. Compared with
previous works, our framework uses general LLMs as the world model and can be adapted to a wide
range of open-domain reasoning tasks.

3 Reasoning via Planning (RAP)

In this section, we present the Reasoning via Planning (RAP) framework that enables LLMs to
strategically plan a coherent reasoning trace for solving a wide range of reasoning tasks. We first
build the world model by repurposing the LLM with prompting (Section 3.1). The world model
serves as the foundation for deliberate planning, by allowing the LLM to plan ahead and seek out
the expected outcomes in the future. We then introduce the rewards for assessing each state during
reasoning in Section 3.2. Guided by the world model and rewards, the planning with Monte Carlo
Tree Search (MCTS) efficiently explores the vast reasoning space and finds optimal reasoning traces
(Section 3.3). Finally, when multiple promising reasoning traces are acquired during planning, we
further introduce an aggregation method in Section 3.4 that yields an integrated result and further
boosts the reasoning performance.

3.1 Language Model as World Model

In general, a world model predicts the next state of the reasoning after applying an action to the
current state [17, 39]. RAP enables us to instantiate the general concepts of state and action in
different ways depending on the specific reasoning problems at hand. For example, in Blocksworld
(Figure 2 left), it is natural to set a state to describe a configuration of blocks (with natural language),
and an action to be a behavior of moving a block (e.g., “pickup the orange block”). In a math
reasoning problem (Figure 2 right), we use the state to represent the values of intermediate variables,
and set an action to be a subquestion that drives the reasoning to derive new values (i.e., new state).

After the definition of state and action, the reasoning process can thus be described as a Markov
decision process (MDP): given the current state st,t=0,1,...,T , e.g., the initial state s0, the LLM (as a
reasoning agent) generates an action following its generative distribution at ∼ p(a|st, c), where c is
a proper prompt (e.g., in-context demonstrations) to steer the LLM for action generation. The world
model then predicts the next state st+1 of the reasoning. Specifically, we repurpose the same LLM to
obtain a state transition distribution p(st+1|st, at, c′), where c′ is another prompt to guide the LLM
to generate a state. For instance, in Blocksworld, the LLM (as the world model) generates text st+1

to describe the new configuration of blocks, given the previous state description st and the action at.

Continuing the process results in a reasoning trace, which consists of a sequence of interleaved states
and actions (s0, a0, s1, . . . , aT−1, sT ). This differs from the previous reasoning methods, such as
Chain-of-Thought [59], where the intermediate reasoning steps consist of only a sequence of actions,
e.g., (a0 = “pickup red block”, a1 = “stack on yellow block”, . . . ) (see comparisons
in Figure 1). Augmenting the reasoning with the (predicted) world states helps the LLM with a
more grounded and coherent inference. Note that the full reasoning trace is simulated by the LLM
itself (as a reasoning agent with an internal world model) without interacting with the external real
environment. This resembles humans contemplating a possible plan in their minds. The capability of
simulating future states, due to the introduction of the world model, allows us to incorporate principled
planning algorithms to efficiently explore the vast reasoning space as described in Section 3.3.

3.2 Reward Design

During reasoning, we want to assess the feasibility and desirability of each reasoning step, and
guide the reasoning based on the assessment (Section 3.3). The assessment of each reasoning step
(i.e., applying an action at to the state st) is performed by a reward function rt = r(st, at) ∈ R.
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Figure 3: An illustration of the four phases in an iteration in MCTS planning (Section 3.3).

Similar to the state and action, the reward function can be specified in different ways to accommodate
any knowledge or preferences about the reasoning problem of interest. Here we introduce several
common rewards applicable to different tasks and shown to be effective in our experiments.

Likelihood of the action. When an action is generated by the LLM conditioning on the current state,
the probability of the specific action reflects the LLM’s preference. We thus can incorporate the log
probability of the action as a reward.

Confidence of the state. State prediction is nontrivial in some problems, e.g., in math reasoning
(Figure 2, right), given an action (i.e., a subquestion), the world model predicts the next state by
answering the subquestion. We incorporate the confidence of the state (i.e., answers in this case) as a
reward. Specifically, we draw multiple sample answers from the world model, and use the proportion
of the most frequent answer as the confidence. A high confidence indicates a reliable reasoning step.

Self-evaluation by the LLM. We can also let the LLM criticize itself with the question “Is this
reasoning step correct?” and use the next-word probability of the token “Yes” as a reward.
The reward evaluates LLM’s own estimation of the correctness of reasoning. Similarly, we can get
another reward by prompting with the question “Is this reasoning step helpful?”, which is
a self-evaluation by LLM on the helpfulness of a reasoning step towards the target.

Task-specific heuristics. We can also flexibly plug-in other diverse task-specific heuristics into the
reward function. For example, in plan generation for Blocksworld, we compare the current predicted
state of blocks with the goal to calculate a reward (Section 4.1). The reward encourages the plan of
movements to actively pace towards the target.

3.3 Planning with Monte Carlo Tree Search

Once equipped with the world model (Section 3.1) and rewards (Section 3.2), we can enable LLMs to
reason with advanced planning algorithms, where we adopt Monte Carlo Tree Search (MCTS) [31, 12],
a powerful planning algorithm that strategically explores the space of reasoning trees and strikes a
proper balance between exploration and exploitation to find high-reward reasoning traces efficiently.

MCTS builds a reasoning tree iteratively, where each node represents a state, and each edge represents
an action and the transition from the current state to the next state after applying the action (Figure 1).
To guide the LLM agent to expand and explore the most promising nodes of the tree, the algorithm
maintains a state-action value function Q : S × A 7→ R, where Q(s, a) estimates the expected
future reward of taking action a in state s. That is, we assess the potential of a node (or a reasoning
step) by looking ahead and anticipating the reward in future trajectories starting from this node.
This fundamentally differs from the current reasoning methods that generate a reasoning trace
autoregressively from left to right without accounting for the future.

More specifically, as illustrated in Figure 3, the MCTS planning performs four operations in each
iteration to expand the tree and update Q values, i.e., selection, expansion, simulation, and back-
propagation. The process continues until a specified computational budget (e.g., the number of
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iterations) is reached, and the resulting reasoning traces are acquired from the tree, as we articulated
later. The psuedo-code of our MCTS planning is given in Algorithm 1 in the Appendix.

Selection. The first phase selects a portion of the existing tree that is most promising for further
expansion in the next phase. Specifically, starting from the root node (i.e., initial state s0), at each
level of the tree, the algorithm selects a child node as the next node. The phase finishes when a
leaf node of the current tree is reached. Figure 3(a) highlights the selected path in red. To balance
between exploration (of less-visited nodes) and exploitation (of high-value nodes), we use the well-
known Upper Confidence bounds applied to Trees (UCT) algorithm [31] to select each child node.
Specifically, at node s, we select the action (which leads to a transition to a child node) in the tree by
considering both the Q value (for exploitation) and uncertainty (for exploration):

a∗ = arg max
a∈A(s)

[
Q(s, a) + w

√
lnN(s)

N(c(s, a))

]
, (1)

where N(s) is the number of times node s has been visited in previous iterations, and c(s, a) is the
child node of applying a in state s. Therefore, the less a child node was visited before (i.e., the more
uncertain about this child node), the higher the second term in the equation. The weight w controls
the balance between exploration and exploitation.

Expansion. This phase expands the tree by adding new child nodes to the leaf node selected above.
Specifically, given the state of the leaf node, we use the LLM (as agent) to sample d possible
actions (e.g., subquestions in math reasoning), and then use the LLM (as world model) to predict the
respective next state, resulting in d child nodes. From the d nodes, we pick the node of largest local
reward (Section 3.2) for simulation in the next phase. Note that if the leaf node selected above is a
terminal (target) state already, we will skip expansion/simulation and jump to back-propagation.

Simulation. This phase simulates the future situations of the current node using the world model, in
order to estimate the expected future rewards (Q values). Specifically, starting from the current node
as above, at each node s, we create an action following a roll-out policy and use the world model to
predict the next state. The roll-out process continues until a terminal state if reached. There could be
different ways to define the roll-out policy (e.g., by adding different randomness). In our experiments,
for simplicity and reduced noises, we just follow the same process as in the expansion above, by
generating d candidate actions and picking one of the largest local reward a′ = maxa′ r(s, a). In
practice, as the roll-out process will evaluate the reward function for multiple nodes, for efficiency, we
discard the computationally expensive components in r (for example, the reward from the confidence
of state requires sampling the answer multiple times), and use the resulting light-weight reward
function for selecting actions during simulation.

Back-propagation. Once we reach a terminal state in the above phases, we obtain a reasoning path
from the root node to the terminal node. We now back-propagate the rewards on the path to update
the Q value of each state-action pair along the path. That is, Q(s, a) is updated by aggregating the
rewards in all future steps of node s. We may adopt the aggregation method according to the nature
of different tasks and reward design, as discussed in Section 4.

As mentioned earlier, once a predetermined number of MCTS iterations is reached, we terminate
the algorithm and select final reasoning trace from the constructed tree. There could be various
ways for the selection. One approach is to start from the root node and iteratively choose the action
with the highest Q value until reaching a terminal. Alternatively, one can directly select the path
from the iterations that yielded the highest reward, or opt to choose the leaf node (and the respective
root-to-leaf path) that has been visited the most. In practice, we observed that the second strategy
often yields the best results.

3.4 RAP-Aggregation: Aggregating Multiple Reasoning Outputs

Ensemble-based methods, such as self-consistency CoT [58], can effectively improve performance
by aggregating multiple valid reasoning traces. Therefore, for problems, such as math reasoning
(Section 4.2) where only the final answer is required, RAP could produce multiple traces and answers
from different MCTS iterations, which will be aggregated to produce the final answer. We refer to
such a mechanism as RAP-Aggregation. Note that problems like plan generation or logical inference
require a complete reasoning trace as output; thus, RAP-Aggregation will not be applied.
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More importantly, there is a concern that some incorrect reasoning steps may appear in the early stage
of multiple iterations, thus polluting the aggregation. As a result, we further devise a new weighting
strategy for aggregating candidate answers. Specifically, for each candidate answer, we accumulate
the reward of each reasoning step in the answer’s reasoning traces. We choose the answer with the
highest accumulative reward as the final aggregated answer.

4 Experiments

In this section, we demonstrate the flexibility and effectiveness of our RAP framework by applying it
to a wide range of problems, including plan generation in an embodied environment, mathematical
reasoning for solving math word problems, and logical reasoning for verifying hypotheses. The
subsequent sections demonstrate how the world model formulation in RAP enables a versatile design
of the state and action, catering to various reasoning contexts.

We primarily compare RAP with Chain-of-Thought (CoT) [59], and its variants like Least-to-Most
prompting [66] as baselines. We also consider previous methods that ensemble reasoning paths from
multiple samples (also known as self-consistency [58]). Moreover, we compare RAP with GPT-4 [44]
when computation resources allow. By default, we use the LLaMA-33B model [56] as the base LLM
for both our methods and baselines, and set the sampling temperature to 0.8.

4.1 Plan Generation

The plan generation task aims to produce a sequence of actions to achieve a given goal, possibly with
additional constraints. The ability to generate plans is important for intelligent embodied agents,
e.g. household robots [46]. This task has also been widely used to evaluate the reasoning ability of
LLMs given their challenging requirements of long-horizon reasoning, e.g., Blocksworld is a classic
problem, where an agent is asked to rearrange the blocks into stacks in a particular order.

Task setup. To explore the viability of the RAP framework for plan generation tasks, we adapt and
evaluate RAP on the Blocksworld benchmark [50]. We define a state as the current orientation of the
blocks and an action as an instruction that moves blocks. Specifically, an action is composed of one
of the 4 verbs (i.e., STACK, UNSTACK, PUT, and PICKUP) and manipulated objects. For the action
space, we generate the currently valid actions given the domain restrictions on actions and the current
orientation of the blocks. To transit between states, we take the current action and query the LLM to
predict the state changes to the relevant blocks. We then update the current state by adding the new
block conditions and removing the conditions that are no longer true. Once a state has met all of the
conditions listed in the goal or the depth limit of the tree is reached, we terminate the associated node.

To assess the quality of actions within this domain, we use two separate rewards. First, we prompt the
LLM with some example test cases along with their solutions, and then calculate the log probability
of the action given the current state (“Likelihood of action” reward in Section 3.2), denoted as r1.
This reward reflects the intuition of the LLM as the reasoning agent. It’s typically indicative when
there are few steps left to the goal, while not as reliable for a distant goal. Additionally, we compare
the new state after performing an action with the goal and provide a reward, r2, scaling with the
number of conditions met (“Task-specific heuristics” reward). Specifically, when all the conditions
are met, we assign a super large reward to make sure this plan will be selected as the solution.

Results. We use test cases from the Blocksworld dataset [57] and group them by solvable steps,
resulting in 30 cases solvable with 2 steps, 57 cases with 4 steps, and 114 cases with 6 steps. There
are at most 5 blocks in each test case. As the baseline method, we prompt the LLM with 4 test cases
with corresponding solutions, and ask it to generate a plan for a new question. This setting is the
same as one described in Valmeekam et al. [57], and we denote it as Chain-of-Thought (CoT) for
briefness. For RAP, the same prompt is shown to help LLMs calculate r1.

As shown in Table 1, CoT with LLaMA-33B can only generate successful plans for a few 2-step
cases, and completely fails on harder problems. RAP substantially improves over CoT by nearly
solving all problems within 4 steps, and a part of 6-step problems, achieving an average success rate
of 64%. It’s worth noting that the searching space of 6-step problems can be as large as 56, while our
algorithm can find a successful plan 42% of the time within 20 iterations. Even more, our framework
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Table 1: Results on Blocksworld. RAP(10) and RAP(20) refer to our method where the iteration
number is set to 10 and 20, respectively. “pass@10” is a relaxed metric, where 10 plans are sampled
for each test case, and the test case regarded as solved if at least one plan is successful. For all other
settings including RAP, only a single plan is evaluated.

Method 2-step 4-step 6-step
CoT 0.17 0.02 0.00

CoT - pass@10 0.23 0.07 0.00
CoT (GPT-4) 0.50 0.63 0.40

RAP(10) 1.00 0.86 0.26
RAP(20) 1.00 0.88 0.42

Goal: Red on blue; orange on redCoT

unstack the orange 
block from on top of the 
yellow block

stack the orange block 
on top of the red block

pick up the yellow block

stack the yellow block 
on top of the blue block

Goal: Red on blue; orange on redRAP
I have that, the red block is clear, the blue block is clear, the orange block is clear, 
the hand is empty, the orange block is on top of the yellow block, the red block is 
on the table, the blue block is on the table and the yellow block is on the table.

Pick up the red block.

I have that, the blue block is clear, the orange block is clear, the red block is in the 
hand, the hand is holding the red block, the orange block is on top of the yellow 
block, the blue block is on the table, and the yellow block is on the table.

Stack the red block on top of the blue block.

I have that, the orange block is clear, the red block is clear, the hand is empty, the 
orange block is on top of the yellow block, the red block is on top of the blue block, 
the blue block is on the table, and the yellow block is on the table.

Unstack the orange block from on top of the yellow block.

I have that, the orange block is in the hand, the red block is clear, the yellow block 
is clear, the hand is holding the orange block, the red block is on top of the blue 
block, the blue block is on the table, and the yellow block is on the table.

Stack the orange block on top of the red block.

I have that, the orange block is clear, the yellow block is clear, the hand is empty, 
the orange block is on top of the red block, the red block is on top of the blue 
block, the blue block is on the table, and the yellow block is on the table.

Figure 4: Comparing reasoning traces in Blocksworld from CoT (left) and RAP (right).

allows LLaMA-33B to outperform GPT-4 by 33% relative improvement [44], which is known to
have much stronger reasoning ability [6].

We further present a case study of comparing the reasoning paths from Cot and RAP. As illustrated
in Figure 4, we find the improvement can be mainly attributed to the following reasons: (1) By
maintaining the world state during reasoning, RAP can recognize valid actions for the current state,
avoiding generating illegal plans. (2) RAP is capable of backtracking and trying out other solutions
when the first intuition from the LLM doesn’t work. Specifically, CoT attempts to achieve the second
goal, i.e. “orange on red”, and achieve that with the first two steps. However, accomplishing the
second goal first would prevent the first goal from being satisfied. On the contrary, even though
RAP makes the same mistakes in the first iterations, our framework drives the agent to explore
other possible paths (as described in Section 3.3) and finally generate a successful plan. (3) When
calculating rt, we can only feed the current state to the LLM and hide the history. E.g., in the case
of Figure 4, to calculate the reward for a2, the LLM is provided with a “new” test case, in which
s2 is the initial state. This significantly lowers the difficulties of the last few steps, and saves more
iterations for harder decisions of the first few steps.

4.2 Math Reasoning

Task setup. Numerical reasoning tasks, such as GSM8k [11], often include a description and a
final question. To arrive at the answer to the final question, it is necessary to undertake multi-step
mathematical calculations based on the problem’s context. It is thus natural to decompose the final
question into a sequence of smaller sub-questions (Figure 2, right). To adapt RAP, we define a state
as the values of intermediate variables, while an action is to propose an incremental sub-question
about a new intermediate variable. The world model then responds to the sub-question using the
intermediate variables and the problem description, adding the new intermediate variable value into
the next state. We combine the self-evaluation of helpfulness by LLM rt,1 and the confidence of state
rt,2 using weighted geometric mean rt = rαt,1 ∗r1−α

t,2 as the reward function. This reward encourages
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Table 2: Results on GSM8k. The super-
scripts indicate the number of samples
or iterations.

Method Accuracy (%)
Chain-of-Thought 29.4

+ SC(10) 46.8
Least-to-Most 25.5

+ SC(10) 42.5

RAP(1) 40.0
RAP(10) 48.6

+ aggr 51.6

1 2 3 4 5 6 7 8 9 10
Number of samples (iterations)

25

30

35

40

45

50
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cu
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cy

Method
Least-to-most
Chain-of-thoughts
RAP
RAP (aggr)

Figure 5: The performance of RAP and baselines
on GSM-8K, with different numbers of sampled
paths or iterations.

more relevant and useful sub-questions. To account for the impact of the reasoning path’s length on
the reward, we compute the Q value by using the maximum of average rewards in future steps.

Q∗(st, at) = max
st,at,rt,...,sl,al,rl,sl+1

avg(rt, . . . , rl). (2)

As a related work, Least-to-Most prompting [66] shares a similar idea to us in sub-question decompo-
sition, but they generate sub-questions all at once. On the contrary, RAP considers each action at
based on the current state st, which enables more informed decisions.

Results. We evaluate our framework on GSM8k, a dataset of grade high school math problems.
We also evaluate the base model with CoT prompting [59], Least-to-Most prompting [66], and their
self-consistency [58] variants, as the baselines. We use the same 4-shot examples demonstrations for
both our framework and the baselines.

As shown in Table 2, our RAP framework answers 48.8% of the problems correctly, outperforming
both the Chain-of-Thought and the Least-to-Most prompting with self-consistency2. Notably, this
result is achieved when RAP only selects only one reasoning trace based on the reward. The
introduction of RAP-Aggregate further improves the accuracy by ∼ 3%. We also calculate the
accuracy with different numbers of iterations in MCTS and self-consistency samples in baselines,
as illustrated in Figure 5. We find that across all numbers of iterations/samples, RAP-Aggregation
outperforms baselines consistently, which indicates that when only a few iterations/samples are
allowed, our framework is significantly better at finding reliable reasoning paths with the guide of
reward.

4.3 Logical Reasoning

Task setup. A logical reasoning task (e.g. PrOntoQA [47]) typically provides a set of facts and
logical rules, and a model is required to verify if a hypothesis fact is true or false by applying the
logical rules to the given facts, as illustrated in Figure 6. These tasks not only require the correct
final answer (true/false), but also a detailed proof demonstrating the result. To apply our framework,
we define the state as a fact we are focusing on, analogous to the human’s working memory [3] for
inference. An action is defined as selecting a rule from the fact set. The world model performs a one-
hop reasoning step to get a new fact as the next state. The reward is calculated with Self-evaluation
(Section 3.2. Specifically, we prompt the LLM with a few examples with their labels to help it better
understand the quality of reasoning steps. We use the average reward of future steps to update the Q
function, the same as Equation (2) for GSM8k.

2While Touvron et al. [56] reports LLaMA’s results on GSM8K, there are not sufficient details to reproduce
their results. As our setting is different from theirs, e.g., prompt design, we do not directly compare our results.
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(1) Carnivores are 
carnivorous.

(4) Every cat is a feline.
(r = 0.8)

Fae is a cat.

Fae is a feline.

Rules: (1) Carnivores are carnivorous. (2) Animals are not unicellular.
(3) Carnivores are mammals. (4) Every cat is a feline.
(5) Each feline is a carnivores. (6) …

Facts: Fae is a feline.
Hypothesis: True or false: Fae is unicellular.

(r = 0.1)
(5) Each feline is a carnivores.

Fae is a carnivore.

(3) Carnivores are mammals.
(r = 0.8)(r = 0.8)

… Fae is a mammal.

Fae is a not unicellular. (False)

𝑠!

𝑎!

𝑠"

𝑎"

𝑠#

𝑠$

…

Figure 6: RAP planning on a PrOntoQA ex-
ample.

Table 3: ProntoQA results.
Method Pred Acc Proof Acc
CoT 87.8 64.8
CoT + SC 89.8 -

RAP (Ours) 94.2 78.8

Results. We assess the performance of our RAP framework on PrOntoQA [47]. We adopt their
settings of “true” ontology (using real-world knowledge), “random” ordering of rules. We mix the
examples requiring 3, 4, and 5 reasoning hops in a correct proof to prevent LLM from memorizing
when to finish the reasoning. We sample 500 examples from the generation script released by Saparov
and He [47]. We compare both the prediction accuracy of the final answer and the accuracy of the
entire proof. We do 20 iterations for MCTS and 20 samples for self-consistency in baselines.

As the results presented in Table 3, our framework achieves a correct answer rate of 94.2% and a proof
accuracy of 78.8%, surpassing the CoT baseline by 14% proof accuracy and the self-consistency
CoT baseline by 4.4% prediction accuracy. Such substantial improvements clearly demonstrate the
effectiveness of RAP in solving logical reasoning problems in the PrOntoQA dataset. Also, as the
case study illustrated in Figure 6, RAP can effectively recognize when a reasoning chain comes to
a dead end, and propagate the signal back to earlier reasoning steps, with the planning algorithm
allowing it to explore alternatives to the previous steps. The self-evaluation reward further helps
RAP to recognize potential incorrect reasoning steps, encouraging the agent to avoid them in future
iterations.

5 Conclusion

In this paper, we present Reasoning via Planning (RAP), a novel LLM reasoning framework that
equips LLMs with an ability to reason akin to human-like strategic planning. By coupling the LLMs’
reasoning capabilities with a world model and principled planning via Monte Carlo Tree Search, RAP
bridges the gap between LLMs and human planning capabilities. Our framework, which repurposes
the LLM to act as both a world model and a reasoning agent, enables the LLM to simulate states of the
world and anticipate action outcomes, while achieving an effective balance between exploration and
exploitation in the vast reasoning space. Extensive experiments on a variety of challenging reasoning
problems demonstrate RAP’s superiority over several contemporary CoT-based reasoning approaches,
and even the advanced GPT-4 in certain settings. RAP’s flexibility in formulating rewards, states, and
actions further proves its potential as a general framework for solving diverse reasoning tasks. We
posit that RAP, with its innovative melding of planning and reasoning, has the potential to redefine the
way we approach LLM reasoning - essentially forging a new pathway toward achieving human-level
strategic thinking and planning in artificial intelligence.
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Algorithm 1 RAP-MCTS(S0, pθ, rθ, pϕ, d, L,N,w)

Require: Initial state s1, state transition probability function pθ , reward function rθ , action generator
pϕ, number of generated actions d, depth limit L, number of roll-outs N , and exploration weight w
Initialize memory of actions A : S 7→ A, children c : S ×A 7→ S and rewards r : S ×A 7→ R
Initialize the state-action value function Q : S ×A 7→ R and visit counter N : S 7→ N
for n← 0, . . . , N − 1 do

for t← 0, . . . , L− 1 do
if st ̸∈ A then ▷ Expansion & Simulation

for i← 1, . . . , d do
Sample a

(i)
t ∼ pϕ(a | st), s(i)t+1 ∼ pθ(st, a

(i)
t ), and r

(i)
t ∼ rθ(st, a

(i)
t )

Update A(st)← {a(i)
t }di=1, c(st, a

(i)
t )← s

(i)
t+1, and r(st, at)← r

(i)
t

end for
end if
at ← argmaxa∈e(st)

[
Q(st, a) + w

√
lnN(st)

N(c(st,a))

]
▷ Selection

st+1 ← c(st, at), rt ← r(st, at), N(st+1)← N(st+1) + 1
if at is an output action then break

end for
T ← the actual number of steps
for t← T − 1, . . . , 0 do ▷ Back propagation

Update Q(st, at) with {rt, rt+1, . . . , rl}
end for

end for
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