
Meta-in-context learning in large language models

Julian Coda-Forno1,2,∗ Marcel Binz1 Zeynep Akata2
Matthew Botvinick3 Jane X. Wang3 Eric Schulz1

1Max Planck Institute for Biological Cybernetics, 2University of Tübingen - Tübingen, Germany;
3Google DeepMind - London, United-Kingdom

∗{julian.coda-forno@tuebingen.mpg.de}

Abstract

Large language models have shown tremendous performance in a variety of tasks.
In-context learning – the ability to improve at a task after being provided with
a number of demonstrations – is seen as one of the main contributors to their
success. In the present paper, we demonstrate that the in-context learning abilities
of large language models can be recursively improved via in-context learning itself.
We coin this phenomenon meta-in-context learning. Looking at two idealized
domains, a one-dimensional regression task and a two-armed bandit task, we
show that meta-in-context learning adaptively reshapes a large language model’s
priors over expected tasks. Furthermore, we find that meta-in-context learning
modifies the in-context learning strategies of such models. Finally, we extend our
approach to a benchmark of real-world regression problems where we observe
competitive performance to traditional learning algorithms. Taken together, our
work improves our understanding of in-context learning and paves the way toward
adapting large language models to the environment they are applied purely through
meta-in-context learning rather than traditional finetuning.

1 Introduction

Large language models (LLMs) are taking not only machine learning research but also society by
storm [1, 2, 3]. Part of what makes these models so persuasive is that their abilities reach far beyond
what we expected pure language models to do. They can, among other things, solve challenging
reasoning problems, including university-level math questions [4] or analogical reasoning tasks [5],
out-of-the-box and without additional training.

Much of this power comes from what is known as in-context learning [6]. In-context learning
(sometimes also called few-shot learning or few-shot prompting) refers to the ability of an LLM to
improve at a given task after being provided with a number of task-relevant demonstrations. This
ability sets LLMs apart from traditional models and led to a totally new paradigm – one which
eschews finetuning of weights on task-specific data altogether and instead relies entirely on contextual
information.

In the present paper, we ask whether the learning algorithm implemented through in-context learning
can be improved through in-context learning itself (without the need for any further finetuning of
parameters). To study this question, we conducted several experiments where we presented an LLM
with multiple learning tasks in a sequence. In three distinct settings, we find evidence for the idea
that the in-context learning abilities of an LLM can be recursively enhanced via in-context learning,
thereby displaying a form of meta-in-context learning. Figure 1 provides a high-level overview of
our approach on an example supervised learning task.

More specifically, we first investigate meta-in-context learning on two artificial domains: a supervised
function learning task, and a two-armed bandit task. For both of them, we find that sequentially
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Task 1:
x=1, y=2
x=3, y=6
x=4, y=8

Task 2:
x=1, y=1
x=2, y=3
x=5, y=9

   […]
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x=2, y=5
x=5, y=

Try to predict y accurately:
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Task 1:
x=1, y=

Figure 1: High-level overview of our approach on an example of multiple three-shot regression tasks.
We present an LLM with N learning tasks in a row. Improvement within a task indicates that the
model is capable of in-context learning. If in-context learning improves across multiple learning
tasks, the model is also capable of meta-in-context learning.

presenting LLMs with multiple learning problems boosts their in-context learning abilities. We
then use these idealized domains to identify the drivers behind meta-in-context learning. We find
that meta-in-context learning adaptively modifies priors over latent variables, ultimately leading to
priors that closely resemble the true statistics of the environment. Furthermore, our analysis reveals
that meta-in-context learning can not only be used to change prior expectations but is also capable
of reshaping an LLM’s learning strategies. Lastly, we apply our approach to a realistic domain
and demonstrate that meta-in-context learning can be used to obtain a learning algorithm that is
competitive with traditional algorithms on a benchmark of real-world regression problems.

2 Related work

In-context learning: Recent work has shown that LLMs can improve their performance after being
shown a few task-relevant demonstrations – an ability referred to as in-context learning [6]. When and
why in-context learning emerges is a matter of ongoing debate, with different theories being proposed.
Chan et al. [7] argued that properties of the training data – such as burstiness and non-stationarity –
are key drivers behind in-context learning. Min et al. [8], on the other hand, found that ground truth
demonstrations can be replaced with random labels while barely hurting performance, suggesting
that the role of demonstrations is more to prime the model for a particular task. Finally, Xie et al. [9]
suggested that LLMs internally need to infer latent variables to make better predictions about future
word occurrences, thereby implementing a form of Bayesian inference.

In-context learning can solve classical learning tasks: If LLMs do apply some form of Bayesian
inference, then one would expect an LLM to also be able to solve classical online learning tasks,
such as regression or classification, purely through in-context learning. Previous research suggests
that this is indeed the case. Lovre [10], for instance, tested GPT-3 on a range of low-dimensional
classification and regression tasks and found that it was often on par with classical learning algorithms
such as logistic regression. Likewise, Hegselmann et al. [11] tested an LLM’s few-shot classification
abilities on tabular data. They found that their approach outperforms prior deep-learning-based tabular
classification methods on several benchmark datasets, and that performance further improves when
the model is provided with semantic information about the data.1 LLMs are not only able to solve
supervised learning problems but also simple reinforcement learning tasks. To provide one example,

1However, it is important to note that their approach does not entirely rely on in-context learning, but involves
some additional finetuning.
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Binz & Schulz [12] evaluated GPT-3 on a two-armed bandit task and found that its performance
exceeded that of human participants who did the corresponding psychological experiment.

Meta-in-context versus classical meta-learning schemes: Meta-in-context learning stands in con-
trast to classical meta-learning schemes in which one adapts a neural network to a distribution over
learning problems by adjusting its weights [13, 14]. Historically, this approach has relied on recurrent
networks [15, 16, 17, 18] but, more recently, researchers have also started to use transformer-based
architectures [19, 20, 21]. For example, Garg et al. showed “transformers can be trained from scratch
to perform in-context learning of linear functions” and that the resulting models achieve “performance
comparable to the optimal least squares estimator.” In a similar vein, von Oswald et al. argued
that “transformers [can in principle] implement gradient descent in their forward pass” and provide
empirical evidence that they indeed do so [19]. In contrast to these approaches, our approach adapts a
model to a distribution of learning problems entirely through the context itself as opposed to updating
weights).

Meta-in-context learning and psychological experiments: Human subjects in psychological ex-
periments are typically evaluated using multiple successive learning problems. Lampinen [22]
highlighted that this is in contrast to the common practice when evaluating LLMs, which involves
probing each task in isolation. Meta-in-context learning addresses this issue by matching the testing
procedure of psychological experiments. Therefore, our upcoming analyses also provide insights into
how to compare LLMs to human behavior [23, 24, 25].

3 Experimental analyses

We used the public OpenAI Python API [26] to run all our simulations. This API provides access to
several LLMs from the Generative Pre-trained Transformer (GPT) family. We ran all our simulations
on the TEXT-DAVINCI-002 model, which is also known as GPT-3. We set the temperature parameter
to zero (leading to deterministic responses) unless otherwise noted and retained the default values for
all other parameters. It is important to note that all experiments performed in this paper rely entirely
on the in-context learning abilities of an LLM, and do not involve any form of finetuning.

3.1 Learning one-dimensional functions

In our first set of experiments, we investigated GPT-3’s ability for meta-in-context learning in a
simple one-dimensional supervised regression task. In this setting, we provided GPT-3 with a list of
input-target pairs from a given task and asked it to make accurate predictions for a new input value.
This is one of the most fundamental machine learning problems, and its simplicity makes it an ideal
testbed for an initial analysis. Every task n consisted of T = 5 input-target pairs (xt, f(xt)), where
t ∈ [1, T ] denotes the trial number. Each input-target pair was generated by a linear function of the
form f(xt) = a(n)xt + b(n) + εt, where a(n) and b(n) are task-specific parameters drawn from a
probability distribution p(T ). Inputs xt were sampled from U(0, 100) and the trial-specific additive
noise εt was sampled from N (0, 1). For our meta-in-context learning simulations, we considered
prompts that include data from up to five tasks, each corresponding to a different underlying function.
Following the schema outlined in Figure 1, we iteratively presented each data-point together with the
history of previous observations, starting from the first trial in task one up to the last trial in task five.
In the box below, you can see an example prompt that we provided to GPT-3:

Function learning prompt

You observe 5 machines that produce an output y for a given input x.
Each machine implements a different function.

Machine 1:

[. . .]

Machine 5:
x = 52, y = −209;
x = 18, y = −138;
x = 60, y = [insert];
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Figure 2: Meta-in-context learning on the one-dimensional regression task (100 simulations). Errors
bars represent 95% confidence intervals. A: MSE across trials for different models. B: GPT-3’s MSE
averaged over trials for each task. C: Effects of trial and task for estimating the MSE. D: GPT-3’s
prior expectations across tasks (blue) compared to the true task distribution (orange).

3.1.1 Results

In preliminary simulations, we found that GPT-3 has a strong bias toward increasing positive functions.
To demonstrate the potential of our approach, we wanted to investigate whether it is possible to
overwrite this bias via meta-in-context learning. In order to achieve this goal, we sampled task-
specific functions with a negative slope and intercept, i.e. a(n) ∼ N (−2, 1) and b(n) ∼ N (−100, 1),
and evaluated how observing multiple such tasks influences the model’s behavior.

GPT-3 does in-context learning: We first established that GPT-3 can learn within a single task
without considering the effects of meta-in-context learning. To do so, we only examined the first task
while ignoring all the subsequent ones. We found that performance as measured by the mean-squared
error (MSE) improves with additional data-points as shown in Figure 2A (solid lines). GPT-3 matches
(or even slightly outperforms) a Bayesian linear regression (BLR) model with default standard normal
priors, indicating that in-context learning is able to solve the given problem. This is especially
noteworthy since GPT-3 was never told that the underlying functions are linear, as opposed to BLR
which has a built-in assumption of linearity.

GPT-3 does meta-in-context learning: Next, we investigated whether GPT-3 is capable of meta-in-
context learning. For this, we inspected how performance changes across the five tasks. Figure 2A
demonstrates that meta-in-context learning is beneficial by comparing performance between the first
and the final task (solid vs dashed lines). For reference, we also plotted the performance of a BLR
model with access to the ground-truth data-generating distribution. Note that this model has access
to privileged information and hence only serves as a performance upper-bound. Figure 2B shows a
more detailed development of performance as we increase the number of tasks in the prompt.
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To test whether the effects of in-context learning and meta-in-context learning are statistically
meaningful, we fitted a linear regression model that included the trial and task number as independent
variables on the MSE. We found statistically significant effects for both trial number (β = −30.614±
3.08, t = −19.514, p < 0.001) and task number (β = −13.26 ± 3.08, t = −8.455, p < 0.001),
confirming that GPT-3 is capable of both in-context and meta-in-context learning (see Figure 2C).

Meta-in-context learning is driven by adaptation of priors: We speculated that GPT-3’s perfor-
mance improves during meta-in-context learning because it adapts its priors to true environmental
statistics. In order to evaluate this hypothesis, we collected GPT-3’s prior expectations before each
task by asking it to make sequential predictions for 20 evenly spaced input values (using the same
prompt template as above, but setting the temperature to one and feeding back the model’s own
predictions as the training data). We omitted outlier predictions that had absolute values of 10, 000 or
larger for this analysis. The estimated priors indicate that GPT-3 has an initial bias toward increasing
positive functions. However, already after two tasks it adapts its priors to decreasing negative func-
tions, thereby closely matching the true environmental statistics (see Figure 2D). Furthermore, the
prior for the intercept term is initially centered around zero but shifts toward the ground-truth value
of −100 after three tasks.

Taken together, these simulations provide initial evidence that GPT-3 engages in meta-in-context
learning, meaning that its in-context learning abilities can be recursively improved via in-context
learning itself. We have suggested and empirically confirmed that GPT-3 accomplishes this by
adapting its priors across multiple tasks.

3.2 Experiments on two-armed bandit tasks

In a next step, we wanted to investigate whether our results from the supervised setting also transfer
to a reinforcement learning paradigm. This setting adds an additional layer of complexity because it
requires the agent to learn from its own experiences instead of having access to ground-truth solutions
of previous tasks. In addition, it allows us to investigate learning strategies and how they evolve
during meta-in-context learning.

For our simulations, we considered a simple two-armed bandit task, in which an agent repeatedly
interacts with two slot machines. In each trial, the agent can select one of two machines and is
rewarded based on a probability distribution that is associated with that machine. The agent’s
objective is to maximize the total amount of acquired points. We used a cover story that involves
a gambler visiting different casinos, which has been used in human experiments with similar tasks
[27, 12], to generate our prompts:

Two-armed bandit task prompt

You are going to different casinos that own two slot machines.
Choosing the same slot machine will not always give you the same points, but one slot
machine is always better than the other. Within a casino, your goal is to choose the slot
machine that will give you the most points over the course of 10 trials.
Each casino owns a different pair of machine.

You have received the following points when playing in casino 1:

[. . .]

You have received the following points when playing in casino 5:
- Machine J delivered 4.2 points.
- Machine F delivered -7.4 points.
- Machine J delivered 3.2 points.
- Machine J delivered 3.9 points.

Q: We are now performing trial 5 in casino 5. Which machine do you choose be-
tween machine J and machine F?
A: Machine [insert].
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Figure 3: Meta-in-context learning on the two-armed bandit experiment (500 simulations). Errors
bars represent 95% confidence intervals. A: Regrets across trials for different models. B: GPT-3’s
regrets averaged over trials for each task. C: Effects of trial and task for estimating the regret. D:
GPT-3’s prior expectation of rewards across games. E: Probit regression coefficients for different
strategies and their interaction with task number.

3.2.1 Results

For each task, we sampled independent mean rewards for each machine from N (0,
√
64). The

actually obtained reward is generated using the mean reward that corresponds to the chosen machine
plus some additive Gaussian noise sampled from N (0,

√
32). To stay consistent with the previous

section, we considered prompts that include data from up to five different tasks for our meta-in-context
learning simulations (each of these tasks consisted of ten trials). We used letters to indicate the
different slot machines. For each task, we randomly sampled two different letters without replacement
to cancel out biases towards certain letters.2

GPT-3 does in-context learning: We again first tested whether GPT-3 learns within a single task.
Figure 3A confirms that this is indeed the case. Performance (measured in terms of regret) improves
over the first four trials and plateaus afterward. However, when comparing GPT-3 to two baseline
algorithms – a greedy policy and an upper confidence bound (UCB) algorithm – we observed that it
lags in performance prior to meta-in-context learning.

GPT-3 does meta-in-context learning: Like in our previous experiment, we found that GPT-3
improves during meta-in-context learning: as it observes more tasks, it gets better at solving new
two-armed bandit problems (see Figure 3B). GPT-3’s performance matches that of a greedy policy
after having interacted with only four tasks and lags only slightly behind that of the UCB algorithm.

We quantified the effects of in-context and meta-in-context learning in a statistical analysis. To do so,
we fitted a linear regression model including the trial and task number as independent variables on the
trial-wise regret. We found significant in-context learning (β = −0.221± 0.012, t = −35.828, p <

2We left out the letters “I” and “U” as we have seen empirically that they induce biases. We also randomized
the order of these letters in the questions at each trial to mitigate recency biases.
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0.001) and meta-in-context learning effects (β = −0.031± 0.012, t = −5.002, p < 0.001), thereby
reproducing our results from the previous section (see Figure 3C).

Meta-in-context learning is driven by adaptation of priors: Following our earlier analysis, we
speculated that part of this performance boost arises because GPT-3 adapts its priors toward the
statistics of the tasks that were encountered during meta-in-context learning. To verify this, we
probed its prior expectations before starting each task by asking “how rewarding do you expect
machine X to be?” We set the temperature parameter = 1 and repeated this question five times
to reflect a sampling from a prior distribution. Figure 3D visualizes the change of priors across
tasks. Before the initial task, GPT-3 expects rewards to be distributed around larger positive values
(M = 545.22, SD = 6359). However, at the end of meta-in-context learning, its priors match the
true data-generating distribution closely (M = 6.49, SD = 4.41).

In addition to looking at the development of priors, the two-armed bandit setting also allows us to
investigate whether any changes in strategies happen during meta-in-context learning. For this, we
relied on an analysis originally proposed by Gershman [27]. The idea behind this analysis is to define
a model that involves a parameterized combination of Boltzmann exploration, a UCB algorithm, and
Thompson sampling, and then fit the parameters of this model to data generated by an agent (GPT-3
in our case). It is then possible to determine the extent to which the agent relied on a specific strategy
by examining the resulting parameters.

We assume that the agent’s beliefs over expected rewards at trial t and action a are captured by the
normal distribution p(ra,t) = N (µa,t, σa,t)

3 and define the following probit regression model based
on the parameters of these distributions:

p(at = 0|wBoltzmann,wUCB,wThompson) = Φ

(
wBoltzmannVt + wUCBRUt + wThompson

Vt

TUt

)
(1)

Vt = µ0,t − µ1,t RUt = σ0,t − σ1,t TUt =
√
σ2
0,t + σ2

1,t (2)

with Φ denoting the cumulative distribution function of a standard normal distribution. Equation 1
recovers a Boltzmann-like exploration strategy for [wBoltzmann,wUCB,wThompson] = [c, 0, 0], a variant
of the UCB algorithm for [wBoltzmann,wUCB,wThompson] = [c, d, 0], and Thompson sampling for
[wBoltzmann,wUCB,wThompson] = [0, 0, 1] [28]. In our analysis, we furthermore included an interaction
effect with task number for each factor to investigate how the applied strategies change during
meta-in-context learning.

Meta-in-context learning reshapes learning strategies: We found a positive main effect of the
value difference Vt (β = 0.307± 0.027, z = 21.759, p < 0.001), indicating that GPT-3 engages in
Boltzmann exploration. GPT-3 becomes more greedy during meta-in-context learning as shown by the
positive interaction effect between task number and Vt (β = 0.128± 0.025, z = 9.633, p < 0.001).
Furthermore, we found negative main effects for both relative uncertainty RUt (β = −0.160 ±
0.010, z = −31.788, p < 0.001) and the uncertainty-scaled value difference Vt/TUt (β = −0.400±
0.025, z = −5.393, p < 0.001), suggesting that GPT-3 avoids uncertain options by default. However,
we also found a slight, but significant, increase in UCB-based decisions during meta-in-context
learning (β = 0.046 ± 0.010, z = 9.279, p < 0.001). Figure 3E shows a visualization of all
regression coefficients involved in this analysis.

The results presented in this section corroborate those obtained from the supervised setting. GPT-3
generally performed better in a two-armed bandit task after meta-in-context learning. We again
observed that GPT-3 accomplishes this by adapting its priors across tasks. In addition, we investigated
changes in strategies during meta-in-context learning and found that GPT-3 learned to perform better
by exploiting more consistently.

3.3 Regression on real-world data

In our final experiment, we wanted to investigate whether our results obtained in the artificial domains
scale up to real-world applications. To test this, we considered a multi-dimensional regression
benchmark which consists of 60 different real-world datasets introduced in [29].

3Following Gershman [27], we obtained these distributions by running Kalman filtering equations on the
previously observed data.
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For each simulation, we randomly selected five different tasks from the benchmark and then sampled
five data-points without replacement for each task. We used five features for all tasks. If a dataset
contained less than five features, we omitted it from our analysis, which yielded 42 remaining datasets.
For tasks exceeding five features, we used a sub-selection procedure that retained only the top five
features based on their F-value with respect to the target variable evaluated in a univariate linear
regression. To maintain a consistent regression loss across all tasks, we normalized both the feature
and target spaces to the interval of [−1, 1]. The resulting prompts follow the general template outlined
earlier:

Regression on real world data

You observe an input vector x and have to predict the corresponding output y as accurately as
possible. You are given 5 different tasks.

Task 1:

[. . .]

Task 5:
x = [−0.81,−0.16,−0.78,−0.77,−0.45], y = −0.34;
x = [−0.81,−0.63,−0.75,−0.83,−0.55], y = −0.68;
x = [−0.79,−0.71,−0.76,−0.8,−0.45], y = −0.75;
x = [−0.2,−0.3,−0.28,−0.11,−0.18], y = 1.0;
x = [−0.97,−0.92,−0.97,−0.97,−0.82], y = [insert];

3.3.1 Results

GPT-3 does in-context and meta-in-context learning: Following the previous experiments, we
investigated the learning curves of GPT-3 and GPT-3 after meta-in-context learning. We additionally
included two baselines in our analysis: BLR and a random forest model. We measured performance
by the root-mean-squared error (RMSE). Figure 4A shows the learning curve for all these models.
Like in the previous cases, we found that GPT-3 improves with additional data-points, confirming
that it is capable of in-context learning in this setting. In addition, meta-in-context learning further
improved performance. GPT-3 after meta-in-context learning matched the performance of BLR and
was only slightly outperformed by the random forest model.

Meta-in-context learning constrains predictions: Most of the improvement of meta-in-context
learning seems to come from zero-shot performance. We hypothesized that this is the case because
GPT-3 acquires an understanding of potential target value ranges during meta-in-context learning. To
test this hypothesis, we plotted the proportion of GPT-3’s outputs that fell at the extreme values of
the target space or outside of it in Figure 4B. We found that meta-in-context learning substantially
reduces the number of predictions that are outside of this range, indicating that meta-in-context
learning helps to learn a better initial guess.

Meta-in-context learning works better when task similarity is high: However, learning a good
initial guess is not the full picture. We speculated that meta-in-context learning is more effective
if there is a higher similarity to previously encountered tasks. To verify this, we fitted a linear
regression model with trial and task similarity on the RMSE. We computed task similarity as the
average similarity between the current data-point and the data-points from all previously observed
tasks (each individual similarity measure was obtained using a radial basis function kernel). We
found a significant effect of trial (β = −0.089± 0.020, t = −9.204, p < 0.001) as shown in Figure
4C, confirming that performance within a task improves with additional observations. Furthermore,
we found a significant effect of task similarity (β = −0.147 ± 0.020, t = −15.223, p < 0.001),
suggesting that meta-in-context learning works best if similarity to previously encountered tasks is
high.

The findings outlined in this section provide further evidence for meta-in-context learning in LLMs.
Notably, GPT-3 exhibited superior performance in a real-world multi-dimensional regression task
following meta-in-context learning. We identified two reasons for this. First, meta-in-context learning
constrained initial model predictions to the range of plausible values, and second, GPT-3 was able to
leverage similarities to previously encountered tasks in order to improve its predictions.
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Figure 4: Meta-in-context learning on the real-world regression benchmark (42 · 50 simulations).
Errors bars represent 95% confidence intervals. A: RMSE across trials for different models. B:
Percentage of predictions outside or equal to the extremes of the squashed target range. C: Effects of
trial and task similarities for estimating the RMSE.

Note that while we were running our model simulations, OpenAI released a new model – GPT-
4. We repeated the analysis from this section on this new model and described our results in the
Supplementary Material. In general, GPT-4 reproduced the findings of the section. However, while
GPT-4 was capable of meta-in-context learning, it performed slightly worse than GPT-3.

4 Discussion

We have demonstrated that LLMs can improve their in-context learning abilities via in-context
learning itself, i.e., that they are capable of meta-in-context learning. Meta-in-context learning was
not only able to overwrite an LLM’s priors but also changed its learning strategies, as demonstrated
in two artificial domains. Finally, we applied our approach to a real-world benchmark of regression
tasks where we found that meta-in-context learning leads to algorithms that are competitive with
standard learning algorithms.

Perhaps the most significant shortcoming of our model simulations is that they all relied on learning
tasks with just a handful of observations. This limitation is mainly due to the practical constraint of
a finite context window coupled with meta-in-context learning’s rapid prompt length increase. To
ensure that we remain within the allowed context length (and to keep the monetary costs for our
simulations at a reasonable level), we had to make this design choice. However, we believe that –
despite this restriction – our simulations were sufficient to illustrate the potential of meta-in-context
learning. We hope that future LLM iterations with longer context lengths and lower inference costs
will allow us to extend our simulations to larger datasets.

In addition, the tasks we probed were rather simplistic in their nature. That being said, we think
we have reasonably covered the space of fundamental learning paradigms, including a supervised
problem, a reinforcement learning problem, and a collection of real-world datasets. With the
increasing availability of multi-modal models, it will furthermore become feasible to apply our
approach to other domains. In this context, two obvious candidates are classification tasks with visual
stimuli or grid-based navigation tasks.

In summary, our work has both near- and long-term consequences. In the near term, it indicates that
it is not strictly necessary to engineer the perfect prompt for an LLM so that it can solve a given
learning problem. Instead, LLMs are – to some degree – able to infer the required information from
just a handful of related-tasks examples. In the long term, it could point to a paradigm where we
adapt these models to the environment they are applied in purely through meta-in-context learning
rather than finetuning them using traditional means.
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5 Supplementary Material

5.1 Regression on real-world data using GPT-4

In this section we investigated the behavior of the newly released GPT-4 model for our last experiment.
We proceeded in the same way as for GPT-3.4 We observed that GPT-4 actually performs slightly
worse both before and after meta-in-context learning as shown in Figure 5A. Furthermore, we
observed a slightly higher percentage of extreme predictions, particularly for GPT-4’s first trial (see
Figure 5B). Finally, our analysis also revealed significant effects for trial (β = −0.133± 0.024, t =
−10.858, p < 0.001) and task similarity (β = −0.196± 0.024, t = −15.963, p < 0.001) as shown
in Figure 5C.
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Figure 5: Meta-in-context learning on the regression on real-world data experiment (42 · 30 simula-
tions). Errors bars represent 95% confidence intervals. A: RMSE across trials for different models.
B: Percentage of predictions outside or equal to the extremes of the squashed target range. C: Effects
of trial and task similarities for estimating the RMSE.

4It is worth noting that the API slightly changed and now provides the option to tailor the message with an
assistant and a system. We did not use them except for the first trial where GPT-4 struggled to give a numerical
output. Indeed, for some examples it instead produced messages such as “unfortunately without any information
about the relationship between the variables, the prediction is not possible.” Therefore, only for that one case,
we added the system functionality as follows: {"role": "system", "content": "If no previous examples, sample y
from your prior distribution. But do not give any non numerical answer! Even if you are unsure, try to predict y
as well as possible."}.
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