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Abstract

Previous studies have shown that large lan-
guage models (LLMs) like GPTs store mas-
sive factual knowledge in their parameters.
However, the stored knowledge could be false
or outdated. Traditional knowledge edit-
ing methods refine LLMs via fine-tuning on
texts containing specific knowledge. How-
ever, with the increasing scales of LLMs,
these gradient-based approaches bring large
computation costs. The trend of model-as-
a-service also makes it impossible to mod-
ify knowledge in black-box LMs. Inspired
by in-context learning (ICL), a new paradigm
based on demonstration contexts without pa-
rameter updating, we explore whether ICL can
edit factual knowledge. To answer this ques-
tion, we give a comprehensive empirical study
of ICL strategies. Experiments show that in-
context knowledge editing (IKE), without any
gradient and parameter updating, achieves a
competitive success rate compared to gradient-
based methods on GPT-J (6B) but with much
fewer side effects, including less over-editing
on similar but unrelated facts and less knowl-
edge forgetting on previously stored knowl-
edge. We also apply the method to larger
LMs with tens or hundreds of parameters like
OPT-175B, which shows the scalability of our
method. The code is available at https://
github.com/PKUnlp-icler/IKE.

1 Introduction

Pre-trained Language models (LMs) have set a new
paradigm for NLP research and sweep across all
existing NLP benchmarks. Due to their promising
results, researchers have empowered LMs with new
skills that meet real-world needs, such as using web
browsers (Nakano et al., 2021), coding (Chen et al.,
2021), playing strategic game (FAIR et al., 2022),
and conversational talents (OpenAI, 2022, 2023).
However, the wide application of LMs also raises
growing concerns regarding its pitfall of generat-
ing content that is fake (Elazar et al., 2021; Cao

Target fact:
Q: The president of the US is?          A: Obama.
Similar fact: 
Q: Who is the president of the US?   A: Obama.

Unrelated facts: 
Q: Who is the president of Russia?   A: Putin.
Q: Who created the Apple Inc.?        A: Steve Jobs.

Main Objective:              Old Fact:   The president of the US is Obama. 
                                      New Fact:  The president of the US is Joe Biden.

Target results: 

change to

Joe Biden.

Joe Biden.

Putin.
Steve Jobs.

should be edited
in-scope

should be retained

out-of-scope

Figure 1: An illustration of knowledge editing, which
requires generalization to different prompts describing
the same fact without interference on other facts.

et al., 2021a), out-dated (Dhingra et al., 2022), bi-
ased (Sheng et al., 2019; Zhao et al., 2021), and
offensive (Gehman et al., 2020). To mitigate this
pitfall, knowledge editing (Fig. 1) aiming to mod-
ify the knowledge learned of LMs has attracted
increasing attention (Mitchell et al., 2022a; Meng
et al., 2022a). The goal of knowledge editing is
two-fold: generalization and specificity. The for-
mer requires generalizing to various prompts de-
scribing the same knowledge and the latter requires
no interference with other unrelated knowledge.

Previous knowledge editing methods mainly
adopt gradient-based methods to modify specific
model parameters for a desired model behav-
ior (Mitchell et al., 2021; Meng et al., 2022a), e.g.,
updating the president after the election. However,
the identification of the target knowledge neurons
usually requires gradient estimation with heavy
computation overhead (Dai et al., 2022). In ad-
dition, the updated parameters inherently lead to
side effects beyond the desired editions, such as
forgetting previously-learned facts or over-editing
on unrelated facts. Previous studies have shown
that when a large-scale LM (LLM) is deployed
as a black-box service (Sun et al., 2022), a minor
modification to its parameters could dramatically
influence its behavior for end users. Therefore, tra-
ditional methods still suffer from editing LLMs
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since these limitations impede the scalability and
generalizability.

Recently, in-context learning (ICL) (Brown et al.,
2020) has emerged as a new paradigm for instruct-
ing LLMs to perform complex tasks. In ICL, the
task description and demonstration examples are
represented in natural language to form a context,
and the prediction of LMs conditioned on the con-
text is transformed into answers according to pre-
defined rules (Brown et al., 2020). In this way, large
LMs adapt to various downstream tasks without
any modifications to parameters, making it a natu-
ral fit for knowledge editing on large LMs. First,
it reduces the computation overhead by avoiding
modifications to parameters, as well as eliminates
the risk of side effects introduced by parameter
updates. Most importantly, ICL provides an inter-
pretable way for humans to calibrate LM behaviors.
Despite these advantages, whether ICL is applica-
ble to knowledge editing still remains unclear.

In this paper, we investigate the potential of ICL
to perform knowledge editing for LLMs. We fo-
cus on two goals: (1) ensuring generalization, so
that large LMs can generalize to multiple text sur-
faces for a piece of updated knowledge, and (2)
ensuring specificity, by making accurate modifica-
tions to the target knowledge fact while preserving
other irrelevant facts. To achieve these goals si-
multaneously, we design demonstration formatting
and organization strategies to construct suitable in-
context learning demonstrations for guiding knowl-
edge editing on LLMs. We define three types of
demonstration formatting templates including (i)
copy, which aims to inject new facts into LMs;
(ii) update, which improves the generalization of
injected knowledge fact; and (iii) retain, which
guides LMs to preserve unrelated knowledge facts.
Additionally, to fully harness the potential of ICL
for knowledge editing, we retrieve relevant knowl-
edge facts from the training corpus as demonstra-
tion inputs.

Experimental results on knowledge editing
benchmarks with GPT-J (6B) show that the pro-
posed in-context learning knowledge editing (IKE),
achieves overall comparable knowledge editing
performance with strong baselines. For example,
IKE outperforms MEND (Mitchell et al., 2021)
by an absolute 10% editing success rate and ob-
tains 30 points gain regarding the specificity over
ROME (Meng et al., 2022a). As there are no pa-
rameter modifications, IKE is applicable to LLMs

such as OPT-175B and exhibits better memoriza-
tion ability, i.e., after editing, nearly 50% knowl-
edge facts retain relatively high probability. Further
analysis reveals that demonstration selection and
the retain demonstrations contribute to specificity,
while the update demonstrations improve general-
ization. Finally, we discuss the potential challenges
that IKE may encounter when applied in real-world
scenarios, and provide corresponding discussions.

In summary, the contributions of this study are
four-fold:

• To the best of our knowledge, this work rep-
resents the first systematic exploration of the
potential for ICL to edit knowledge in LMs.

• We give comprehensive empirical studies on
ICL strategies and analyze how these strate-
gies affect the final performance.

• By designing proper demonstration format-
ting and organization strategies, IKE achieves
comparable success rates with less computa-
tion overhead and side effects.

• We investigate the feasibility of applying IKE
to real-world scenarios and discuss potential
challenges.

2 Related Work

Knowledge Editing Methods Recent studies on
knowledge editing are mostly hype-network-based
or attribution-based. The hype-network-based
methods train a hyper-network to get gradient
changes for certain edits. For example, Cao et al.
(2021b) used a hyper-network to predict param-
eter shift at test time, which alters a fact while
retaining unrelated facts. MEND (Mitchell et al.,
2022a) learned to transform the original fine-tuning
gradient into a low-rank decomposition of the gra-
dient. Mitchell et al. (2022b) used an edit memory
retriever and a counterfactual model to generate
without updating the parameters of the base model.
Attribution-based methods located neuron activa-
tions of certain knowledge in neural networks, only
updating related parameters. Dai et al. (2022) eval-
uated the contribution of different neurons to spe-
cific knowledge using gradient-based attributions,
and updated or erased facts by replacing columns in
Multilayer Perceptron(MLP) weight matrices with
scaled embedding vectors. Meng et al. (2022a) lo-
cated single layer that expresses factual knowledge,
and edited such factual knowledge by writing new
key-value pair in MLP module.



Knowledge Editing Benchmarks Several
knowledge editing benchmarks are commonly
used to evaluate the efficacy and specificity of
editing approaches. For BERT-style models, fact-
checking dataset FEVER (Thorne et al., 2018) and
question-answer dataset zsRE (Levy et al., 2017)
are usally adopted. In FEVER, each x is a claim
and each y indicates the validity of corresponding
claim. In zsRE, each x is a question about a fact
and each y is the answer, and xloc questions fact ir-
relevant to x. For GPT-style models, Mitchell et al.
(2022a) introduced Wikitext editing dataset that
requests the model to complete passage with edited
continuation while the distribution of each token is
unrelated passage xloc should remain unchanged.
In our experiment, we use a more challenging
QA dataset called COUNTERFACT (Meng et al.,
2022a). In COUNTERFACT, the edited answer y
to question x can sometimes be counterfactual to
real world, and unrelated out-of-scope sample xloc
is much more difficult than that in zsRE, which
makes it harder for the model to predict desired
answer. Furthermore, these desired facts are hardly
captured by pre-trained LMs, avoiding the effects
of LLMs knowing this knowledge before editing.

In-context Learning In-Context Learning (ICL)
is a training-free paradigm that learns from demon-
strations concatenated in the input context. Given
related examples and a query, the model learns
from analogy to make predictions (Brown et al.,
2020; Liu et al., 2022). Existing knowledge edit-
ing methods require re-calculating the gradient or
calculating and perform such knowledge editing
in an inexpensive way. Si et al. (2022) is the first
to explore whether in-context learning can update
knowledge in LLMs, and show that incorporating
all kinds of demonstration increase the success rate
of knowledge editing. However, they only focus on
GPT-3, without deep exploration on the potential
ability and side effects of knowledge editing.

3 Task Formulation

The goal of knowledge editing is to inject a new
fact (x∗, y∗) into a LMM by maximizing the prob-
ability PM(y∗|x∗). The x∗ is the prompt to probe
the factual knowledge inM (e.g., The president
of the US is), and y∗ will be the editing tar-
get Joe Biden. Knowledge editing also requires
generalization and specificity:

• Generalization: For the prompt x in the edit

Model Input

Model Output

Context C = k demonstrations: {c1, ... ck }

New fact: Paris is the capital of France. Japan.
Q: Which city is the capital of Japan? A:_____

 Paris.

c1  

c2  

c3  

Example for Copying
New Fact: The president of US is Obama. Biden.
Q: The president of  US is? A: Biden.                              

Example for Updating
New Fact: Einstein specialized in physics.math.
Q: Which subject did Einstein study? A: math.                            

Example for Retaining
New Fact: Messi plays soccer.tennis.
Q: Who produced Google? A: Larry Page. 

...

x：  
f ：

y：  
...

Figure 2: An illustration of in-context knowledge edit-
ing.

scope Dx∗ (i.e., prompts related to the new
fact), the prediction of x ∈ Dx∗ should be also
updated to y∗. For example, the prediction of
Q: Who is the president of the US? A:
will be updated to Joe Biden.

• Specificity: For the prompt x out of the edit
scope, x /∈ Dx∗ , the prediction of x should
be its original prediction yo. For example, the
prediction of The president of Russia is
should be retained.

4 Method: IKE

4.1 In-Context Learning

In-Context Learning (ICL) is proposed by Brown
et al. (2020) for few-shot learning. For a large lan-
guage modelM, ICL aims to predict ŷ ∈ Y for
an input x without any parameter updating based
on k demonstrations C = {(x1, y1), . . . , (xk, yk)}.
The language model M predicts the probability
of y ∈ Y given x: PM(y | x,C). More specif-
ically, ICL uses templates T to transform the in-
puts and labels into natural language texts. Take
sentiment analysis as an example, an in-context
demonstration with input xi and label yi will be
transformed to Sentence: xi. Sentiment: yi, then
the language modelM will predict y ∈ Y given
T (x1, y1), . . . , T (xk, yk), T (x, ).

4.2 In-Context Knowledge Editing

When we inject a target fact f = (x∗, y∗) into
LMs, we will construct k demonstrations C =
{c1, . . . , ck}. The goal of knowledge editing is to
maximize P(y∗ | x, f, C) when prompt x is in the



editing scope of target prompt x∗, x ∈ Dx∗ (the
Generalization goal) and minimize the distance
between P (y | x, f, C) and P (y | x) when x /∈
Dx∗ (the Specificity goal). LMs should determine
whether the probing prompt x is in the editing
scope of x∗, namely Dx∗ . To achieve these goals
with ICL, proper demonstration inputs are crucial.
We further decompose the demonstration construc-
tion for knowledge editing with f as the target into
two sub-problems:

(i) how to design the format of each demonstra-
tion; and (ii) how to select and rank in-context
demonstrations (Dong et al., 2023).

4.2.1 Demonstration Formatting
Each demonstration ci contains a new fact fi =
(x∗i , y

∗
i ), a probing prompt xi and its prediction

yi. In-context demonstrations should teach LMs to
copy, update and retain the predictions for different
prompts:

• copy: To inject new facts into LMs, the first
step is to teach them to copy the prediction
of the target prompt in new facts. In copy
demonstrations, xi = x∗i and yi = y∗i .

• update: Knowledge editing is not simply
teaching LMs to repeat the new fact. For the
generalization of knowledge editing, the pre-
diction of prompts in the editing scope should
also be updated. In update demonstrations,
xi ∈ Dx∗i and yi = y∗i .

• retain: For the specificity of knowledge edit-
ing, LMs should keep their original prediction
in out-of-scope prompts. In retain demonstra-
tions, xi /∈ Dx∗i and yi should be its original
answer yoi .

The template T of IKE transforms f , x
and y into natural language: T (f, x, y) =
New Fact: f . Prompt: x y. Details are listed in
§A.

4.2.2 Demonstration Organization
When we edit a knowledge fact f in LMs, we con-
struct k demonstrations C = {c1, . . . , ck} from the
training corpus. Which demonstrations are good
demonstrations for in-context editing? We follow
Liu et al. (2022) to use an unsupervised retriever
to choose k nearest neighbors. More specifically,
we use a pretrained sentence encoder E to encode
the prompt x∗ of new fact f together with its orig-
inal answer yo and targeted prediction y∗. The

Editing Method Scalability Side Effects Interpretability

Gradient-based ++ - - - +
In-context Learning +++ - +++

Table 1: Comparison of knowledge editing methods,
ICL is more computationally efficient and interpretable,
with fewer side effects introduced.

records in the training corpus will be encoded in
the same way and k-NN facts are retrieved based
on the cosine similarity. The ranking of in-context
demonstrations also depends on the cosine similar-
ity: cos(c0, f) < cos(c1, f) < . . . < cos(ck, f),
where c1, . . . , ck are placed in the context from left
to right.

4.3 Discussion: Gradient-based methods and
gradient-free methods

Previous parameter updating methods will adjust
the parameters θ of LMs M. They calculate
∆θ based on the gradients ∇θ − logPM(y∗|x∗)
to update the base model Mθ to a edited one
M′θ+∆θ. The editing method will then be eval-
uated by PM′(y | x). Instead, in-context learn-
ing modifies the knowledge fact in M by con-
structing demonstrations C for the new fact f =
(x∗, y∗), then the editing method will be evaluated
by PM(y | x, f, C). Comparing PM(y | x, f, C)
with PM′(y | x), it can be found that: (i) ICL re-
quires no gradient estimation for the target fact and
keeps the original LMM untouched after knowl-
edge editing. This greatly reduces the computa-
tion overhead thus making the editing applicable
for LMs with trillion-level parameters, as well as
eliminating the side effects of the modified parame-
ters. (ii) The demonstration C is represented in the
natural text which is more interpretable than the
salient parameter update ∆θ. It provides a human-
understandable interface for calibrating the model
behavior. We highlight the characteristics of these
two methods in Table 1.

5 Experiment

In this section, we perform experiments to answer
the following research question:

• Compared to gradient-based methods, what’s
the performance of IKE?

• How do the demonstration designing strate-
gies influence the performance of IKE?



• How does the scale of LMs affect the per-
formance of IKE, can IKE scale up to large
language models with tens or hundreds of bil-
lions of parameters?

• What are the side effects of knowledge editing
and does IKE cause more or fewer side effects
than other parameter updating methods?

We first introduce the experimental settings in-
cluding the compared baseline methods, evaluation
benchmark, and LMs across different scales for
knowledge editing (§5.1). We then analyze the
main knowledge editing results in §5.2 and the im-
pacting factors of in-context learning knowledge
editing (§5.3).

5.1 Experimental Setting

We aim to evaluate the performance of in-context
knowledge editing compared to parameter updat-
ing approaches. We also conduct experiments on
different sizes of LMs to explore the scaling-up
ability of in-context knowledge editing.

5.1.1 Baselines
Following previous knowledge-editing methods,
we also choose GPT-J (6B) as our main evaluation
backbone. The compared baselines include:

FT Fine-tuning the base model on text describing
the edit fact, without training a new model editor
by applying Adam with early stopping.

MEND MEND (Mitchell et al., 2022a) trans-
forms the fine-tuning gradient of an updated fact by
decomposing the weight matrix into rank-1 form
with the pretrained hyper-network.

ROME ROME (Meng et al., 2022a) learns to
locate factual retrievals of a specific set of MLP
modules and update knowledge by directly writing
in new key-value pairs in the MLP module.

PROMPT To explore how in-context demonstra-
tions influence the performance of IKE. We directly
use the new fact as context to probe the LMs by
P(y|x, f) where f = (x∗, y∗).

The implementation details are in §A

5.1.2 Evaluation Setup
Models To explore how the scale of LMs will
influence the effectiveness of in-context knowledge
editing, we evaluate in-context knowledge editing

on five GPT-like auto-regressive transformer lan-
guage models whose scales range from 1.5B to
175B parameters:

• GPT-2 XL (1.5B) (Radford et al., 2019), the
1.5 billion parameter version of GPT-2.

• GPT-NEO (2.7B) (Gao et al., 2021), the 2.7
billion parameter version of a GPT-2 like
causal language model released by EleutherAI.
It is trained on the Pile dataset specifically de-
signed for LLM training.

• GPT-J (6B) (Wang and Komatsuzaki, 2021),
an auto-regressive text generation model
trained on the Pile with 6 billion parameters.

• GPT-NEOX (20B) (Black et al., 2022), a 20
billion parameter auto-regressive language
model trained on the Pile.

• OPT (175B) (Zhang et al., 2022), open pre-
trained transformers with 175 billion parame-
ters created by MetaAI.

Benchmark We mainly evaluate baselines on
COUNTERFACT (Meng et al., 2022a), a challeng-
ing benchmark suitable for GPT-like causal lan-
guage models with difficult editing targets and
hard-to-distinguish editing scopes. It contains
21, 919 records of diverse relations and entities.
The target of each record is to change the knowl-
edge triplet (s∗, r∗, oc) to (s∗, r∗, o∗) where s∗ and
r∗ are described by the target prompt x∗. The
record also contains paraphrase prompts PP as in-
scope prompts and neighborhood prompts PN , i.e.,
knowledge triplets (s′, r∗, oc) that share the same
object with target triplets as out-of-scope prompts.
We follow Meng et al. (2022a) to use first 2000
records as the test set and the remaining records
are divided into training set. The details of COUN-
TERFACT are listed in §B.

Metrics The performance of knowledge editing
is measured from three aspects (Efficacy, General-
ization, and Specificity).

• Efficacy measures the post-editing accuracy
for target prompts by Efficacy Score (ES,
E[I[P(o∗) > P(oc)]]) and Efficacy Magni-
tude (EM, E[P(o∗)− P(oc)]).

• Generalization measures post-editing accu-
racy on paraphrase prompts by Paraphrase



Editing Method #Edited Params. #Extra Params. Score Efficacy Generalization Specificity
S↑ ES↑ EM↑ PS↑ PM↑ NS↑ NM↑

GPT-J (6B) 0 0 22.0 16.2 -7.4 15.9 -7.5 83.2 7.4

FT 64M 0 28.7 99.9 98.6 96.4 67.0 11.9 -48.6
MEND 384M 896M 63.6 90.4 53.9 53.4 14.3 57.6 -3.3
ROME 64M 256M 91.5 100 99.4 99.6 78.0 78.5 5.0
PROMPT 0 0 63.3 99.7 80.9 91.0 32.9 37.9 -2.8
IKE (32 examples) 0 20M 89.6 100 91.7 95.2 64.5 77.0 35.2

OPT (175B) 0 0 18.7 12.6 -8.4 14.3 -8.1 86.9 8.4

PROMPT 0 0 58.1 99.6 77.2 94.1 37.4 32.3 -7.8
IKE (32 examples) 0 20M 94.1 100 92.5 98.8 83.6 85.1 45.5

Table 2: Knowledge Editing Performance for GPT-J (6B) and OPT (175B) on COUNTERFACT. Efficacy, General-
ization, and Specificity are evaluated based on target, in-scope, and out-of-scope prompts respectively. Details of
the Metric can be found in §5.1.2. green means column-wise maxima and red indicates poor generalization or
specificity.

Score (PS) and Paraphrase Magnitude (PM).
The definition of PS and PM is similar to ES
and EM.

• Specificity measures the accuracy of neighbor-
hood prompts by Neighborhood Score (NS,
E[I[P(oc) > P(o∗)]]) and Neighborhood
Magnitude (NM, E[P(oc) − P(o∗)]), as the
neighborhood prompts (s′, r∗, oc) share the
same original object with the target prompt
and these facts are not supposed to be edited.

We also follow Meng et al. (2022a) to report the
harmonic mean of ES, PS, NS as Score (S)

5.2 Main Results

The top rows of Table 2 show the knowledge edit-
ing results of different methods. Our findings are:
(i) All methods perform well in terms of efficacy,
as indicated by their close ES scores. However,
there are significant differences in terms of gener-
alization and specificity. For instance, FT achieves
high ES (99.9) and PS (96.4) scores but performs
poorly in terms of specificity. This highlights the
challenge of balancing generalization and speci-
ficity in knowledge editing. (ii) Among the base-
line methods, ROME performs the best overall
regarding all three metrics, but comes with high
computational overheads. Due to this limitation,
it is not applicable to larger LMs such as OPT-
175B that are in more urgent need of knowledge
editing. (iii) The proposed method IKE excels
in specificity but also performs well in efficacy
and generalization. For example, IKE achieves
a comparable overall score with ROME on GPT-
J (89.6 v.s. 91.5), while requiring no parameter

Editing Method S↑ ES↑ PS↑ NS↑

IKE (32 examples) 89.6 100 95.2 77.0

- 4 examples 81.5 99.6 83.5 67.5
- 8 examples 84.2 100 85.6 71.7
- 16 examples 87.0 100 91.7 73.6

- random selection 70.3 100 95.8 45.0
- random ordering 88.9 100 95.4 75.1

- w/o copy 88.6 100 96.9 73.9
- w/o update 84.4 100 73.8 83.4
- w/o retain 28.0 100 99.8 11.5

Table 3: Ablation study on demonstration designing.
Increasing the number of demonstrations improves the
overall performance. The definitions of metrics are the
same as Table 2. Demonstration selection and the re-
tain demonstrations contribute to specificity, while the
update demonstrations improve generalization.

modifications on LMs. This computation benefit
makes it possible to perform knowledge editing on
large LMs such as OPT-175B, where IKE achieves
clear improvements over PROMPT by 36.0 points.
These results demonstrate the effectiveness, effi-
ciency and scalability of IKE in knowledge editing.

5.3 Analysis

In this part, we discuss the effects of different
demonstration strategies, the scalability of IKE for
models across scales and side effects introduced by
knowledge editing.

5.3.1 Ablation on Demonstration
Demonstration Numbers The number of
demonstrations is one of the influencing factors
for the ICL performance (Brown et al., 2020). We
investigate how the number of demonstrations
influences the IKE performance in the second



Models Generalization Specificity
PS↑ PM↑ NS↑ NM↑

GPT-2 XL (1.5B) 85.1 42.8 72.0 21.0
GPT-NEO (2.7B) 96.3 73.5 70.7 28.0
GPT-J (6B) 95.2 64.5 77.0 35.2
GPT-NEOX (20B) 97.5 78.3 79.8 41.3
OPT (175B) 98.8 83.6 85.1 45.5

Table 4: The IKE performance on different LMs whose
scales range from 1.5B to 175B. All IKE methods
adopt 32 demonstrations except GPT-2 XL due to its
maximum context length. Larger LMs achieve better
generalization and specificity.

block in Table 3. Without any demonstrations,
PROMPT exhibits over-generalization for its low
NS (37.9), indicating it simply learns to copy the
prediction. Given a few demonstrations (4 or 8),
IKE performs worse than PROMPT in Efficacy
and Generalization as it begins to distinguish
whether a prompt is in the editing scope. With
the increased number of demonstrations, IKE
gradually learns to balance generalization and
specificity, achieving a better trade-off.

Demonstration Organization Previous studies
(Liu et al., 2022; Rubin et al., 2022; Lu et al., 2022)
suggest that demonstration organization including
Demonstration Selection and Demonstration Order-
ing (Dong et al., 2023) is also crucial for ICL. Our
proposal follows a simple unsupervised method
Liu et al. (2022), to retrieve and order demonstra-
tions from the training corpus based on the cosine
similarities between the input prompt and demon-
strations. In our two ablation studies in the third
block of Table 3, we find that removing the se-
lection procedure (i.e., Random Selection) leads
to a clear drop in the NS score from 77.0 to 45.0,
indicating the importance of proper prompt selec-
tion. However, random ordering brings negligible
performance difference. We speculate that this is
because the selected prompts are highly related
to the target fact and the attention mechanism in
Transformer-based LMs can handle long-range de-
pendencies well. We leave further improvements
as future work.

Demonstration Formatting We further exam-
ine the impact of demonstration types including
copy, update and retain. As shown in the fourth
block in Table 3, removing copy demonstrations
causes slight performance degradation, as LMs can
easily copy the content in the demonstration even
without a copy demonstration. Instead, update

demonstrations perform an important role in teach-
ing LMs to modify their knowledge, as indicated
by a much poorer generalization score after remov-
ing upate demonstrations. Besides, The removal
of retain demonstrations leads to a dramatic drop
in the specificity, as measured by the NM score,
which decreases from 35.2 to -47.6. This indicates
that retain demonstrations are crucial in helping
LMs identify out-of-scope facts and maintain their
original predictions on those prompts.

5.3.2 IKE Benefits from Model Scaling
We further evaluate IKE on COUNTERFACT for
five GPT-like causal language models across differ-
ent scales. As previous experiments have shown
that all methods exhibit high knowledge editing
efficacy, we focus on the generalization and speci-
ficity for large LMs, as these metrics are defined
to measure the side effects that could cause great
influences on end users. As demonstrated in Ta-
ble 4, we find that the performance of IKE is posi-
tively correlated with the scale of the LM and the
largest OPT-175B achieves the strongest general-
ization and specificity results. This is inspiring as
the performance IKE could be enhanced with the
increased scale of LMs, making it pluggable for
future stronger LM backbones.

5.3.3 Resilience to Over-Editing
Over-editing is a common side effect of knowl-
edge editing, which denotes the influences on out-
of-scope facts when editing a targeted fact. Al-
though COUNTERFACT already includes out-of-
scope prompts consisting of (s′, r∗, oc) sharing the
same relation r and original object oc with the
editing target: (s∗, r∗, oc) → (s∗, r∗, o∗), we per-
form a more comprehensive evaluation on over-
editing by adopting the contrastive knowledge as-
sessment (CKA) proposed by Dong et al. (2022).
Specifically, for a triplet (s, r, o), CKA replaces
r with other similar but unrelated relations r′ and
compares PM(o|s, r) and PM(o|s, r′) to assess
whether M knows the fact (s, r, o). Inspired by
this, we regard (s∗, r′, o∗) as similar but unrelated
prompts and consider the change in P(o∗|s∗, r′)
and find that P(o∗|s∗, r′) will also increase after in-
jecting (s∗, r∗, o∗). To further explore over-editing
in different methods, we consider the CKA score,
P(o∗|s∗, r∗)/Er′∈RP(o∗|s∗, r′).

The results of CKA evaluation are listed in Ta-
ble 5. If the CKA score is less than predefined
threshold α, the perplexity of the correct fact is



Method CKA Score (↑) False Rate (score < α) (↓)
α =1.0 α =1.1

FT 1.8 0.6 % 19.5 %
ROME 1.7 0.4 % 24.1 %
PROMPT 2.3 0.2 % 1.0 %
IKE 2.1 0.1 % 1.7 %

Table 5: CKA Evaluation shows that editing meth-
ods will over-edit (s∗, r′, ∗) when editing (s∗, r, o) →
(s∗, r, o∗). Low CKA score means over-generalization
and False Rate is the fraction of records whose score is
less than α.

close to the perplexity of contrastive fake facts,
which turns out to be an editing failure. Although
all baselines perform well in terms of editing ef-
ficacy, they tend to be over-generalization under
a stricter contrastive assessment. ROME gets the
lowest average CKA score and highest false rate,
which shows its poor ability to identify out-of-
scope prompts sharing the same subject with target
prompts. IKE has less influence on over-editing.

5.3.4 Maintenance for Original Knowledge
We conclude that previous factual knowledge
stored in LMs will be erased or forgotten in
knowledge editing. We consider the change of
P(oc|s∗, r) before and after editing in Table 6.
The results demonstrate that all editing methods
will cause the drop of P(oc|s∗, r∗). ROME for-
gets almost all original facts. If we want to cor-
rect the prediction of LMs, erasing the original
factual knowledge is necessary. However, if we
want to update the prediction of language models
like updating the prediction of The president of
US is from Donald Trump to Joe Biden (time-
aware relations), the old knowledge In 2017, the
president of US was Donald Trump should not
be forgotten.

To evaluate the forgetting of such time-aware
knowledge in editing, we construct a small bench-
mark based on TEMPLAMA (Dhingra et al., 2022)
to further show that IKE can cause less knowledge
forgetting than other baselines in §C.

6 Discussions

In previous experiments, we follow the setup of
previous studies Meng et al. (2022a) and mainly
evaluate methods to edit individual facts for a fair
comparison. Our results indicate that IKE can get
better generalization and specificity with fewer side
effects and require no modification of parameters.
Nevertheless, in order to investigate the feasibility

Method Prob. Drop (↓) Forgetting Rate (↓)

FT 7.6 94.1 %
ROME 7.7 99.3 %
PROMPT 6.2 64.1 %
IKE 6.1 50.5 %

Table 6: Knowledge Editing can cause forgetting of
original facts in LMs. Prob. Drop means ∆P(oc|s∗, r)
between pre- and post-editing. An original fact is for-
gotten when ∆P(oc|s∗, r∗) > 0.5× P(oc|s∗, r∗).

of applying IKE to real-world scenarios, several im-
portant questions remain under-explored: (1) Can
IKE be extended to accommodate a larger num-
ber of editing facts? Considering the limited input
length of language models, it may not be feasible
to include tremendous editing facts within the con-
text. (2) Can IKE be adapted to handle different
formats and domains of facts and prompts? In
IKE, the domain and format of facts and prompts
are kept consistent. However, in real-world settings,
facts and prompts come in diverse forms.

Mitchell et al. (2022b) propose a retrieval-based
method for editing multiple knowledge facts. Simi-
larly, IKE with an external memory to store factual
edits can retrieve the proper factual edit to construct
context for a given prompt, thus avoid prepending
all factual edits in context forever. To validate the
generalization of IKE on different forms of facts or
prompts, we replaced facts with neutral data from
Wikipedia, or replaced prompts with generation
prompts that prompt the LM to generate text re-
lated to the new object. Detailed discussion can be
found in §D.

7 Conclusion

In this work, we examine the potential of in-context
learning for knowledge editing on large-scale lan-
guage models. Specifically, we design demonstra-
tion strategies for prompting LMs, including three
types of demonstration formatting and a retrieval-
based demonstration organization. We show that
the proposed method, IKE, achieves competitive
knowledge editing efficacy without requiring any
parameter modifications, as well as maintains de-
cent generalization and specificity performance.
Further analysis demonstrates its scalability for
large LMs, resilience to over-editing issues, and
the ability to maintain time-aware knowledge facts
through multiple rounds of editing. Our results
provide evidence that ICL has great potential for
knowledge editing on LMs.
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Type Demonstration

copy New Fact: What does Sylvano Bussotti play? They play jazz.
Prompt: What does Sylvano Bussotti play? They play jazz.

update New Fact: What does Sylvano Bussotti play? They play jazz.
Prompt: Sylvano Bussotti performs jazz.

retain New Fact: What does Sylvano Bussotti play? They play jazz.
Prompt: The genre played by Fritz Kreisler is violin.

Table 7: Three kinds of demonstrations: copy, update, and retain.

Property Symbol Value

target prompt x∗ The mother tongue of {} is
relation_id r∗ P103
target_new o∗ English
target_true oc French
subject s∗ Danielle Darrieux
paraphrase_prompt x ∈ D, PP Danielle Darrieux, a native
neighborhood_prompts x /∈ D, PN The native language of Montesquieu is

Table 8: One example from the COUNTERFACT dataset.

2019), and sentence transformers (Reimers and
Gurevych, 2019). Pytorch is licensed under the
modified BSD license. Huggingface and Sentence
transformers are under Apache License 2.0. IKE
with 32 examples are run in a 40 GB NVIDIA A40
GPU for about 3 GPU hours.

A.2 Demonstration Designing

We follow Liu et al. (2022) to choose k-NN exam-
ples from the training corpus. The demonstrations
are encoded by all-MiniLM-L6-v2. For LMs with
maximum context length as 2048, we set k to 32;
and for LMs with maximum context length as 1024,
we set k to 16.

A.2.1 Demonstration Formatting

We have defined three types of in-context demon-
strations in 4.2.1. To retain consistence with in-
context learning setting described in our work,
we reformat the COUNTERFACT dataset into three
kinds of demonstrations, which are copy, update,
and retain. Examples are shown in table 7. Here
the true fact to be changed is "What does Syl-
vano Bussotti play? They play opera.", the new
fact is "What does Sylvano Bussotti play? They
play jazz.". The demonstration format follows
T (f, x, y) = New Fact: f . Prompt: x y, where f
is the new fact, x is the probing prompt (e.g. What
does Sylvano Bussotti play? They play) and y is
model prediction (e.g. jazz). Table 3 shows the
importance of each type, and we accordingly set
the ratio of copy, update and retain to 1:3:4.

The order of demonstration types is an under-
explored influencing factor of IKE. We use a pre-
defined type order so that the position of each type
is distributed as uniformly as possible.

A.3 Other Baselines

We conduct other baselines with the code imple-
mented by Meng et al. (2022a). 1 We simply add
the prefix Prompt: in prompts and report the re-
sults conducted by us.

B Details of COUNTERFACT Dataset

Table 8 illustrates an example from COUNTER-
FACT. This entry requests that "the mother tongue
of Danielle Darrieux should be changed from En-
glish to French". Each entry has several paraphrase
prompts and several neighborhood prompts. Para-
phrase prompts are semantically equivalent to the
original prompt, neighborhood prompts are those
that share the same relation and object with the
original prompt but have different subjects. The
raw COUNTERFACT dataset also includes attribute
prompts and generation prompts, but they are not
adopted in our work. We use the first 2,000 records
as test split for evaluation and other records are
training split.



Property Value

query Tom Brady plays for _X_.
relation P54
old target prompt In 2019, Tom Brady played for England Patriots
new target prompt In 2020, Tom Brady played for Tampa Bay Buccaneers

Table 9: One example from the TEMPLAMA dataset.

C Time-aware Knowledge Editing

Table 9 illustrates an example from TEMPLAMA 2.
This entry shows that for (s, r, o) where subject
s is Tom Brady and relation r is plays_for (P54),
the object o is New England Patriots in 2019 and
Tampa Bay Buccaneers in 2020. TEMPLAMA in-
cludes time-aware relations such as member of
sports team, where the object of the relation-
ship could be changed in different times. We
collect three relations in TEMPLAMA: member
of sports team, position held, employer in-
cluding 2067 facts (t, s, r, o). We inject differ-
ent facts: (t1, s, r, ot1), . . . , (tn, s, r, otn) for same
subject and relation sequentially. By sampling
knowledge facts (t, s, r, ot) and the object ot is
changing for different time t and injecting facts
in chronological order, we evaluate whether the
editing history could be maintained by LMs.

Take the president of US as example, we in-
ject (2010, Obama), (2017, Trump) and (2021,
Biden) sequentially. We probe the oldest fact: In
2010, the president of US was to test if the
LM can still memorize the oldest fact after multi-
ple edits of the same fact by the memorization ra-
tio, Pt=tn(ot1 |s, r, t1)/Pt=t1(ot1 |s, r, t1). t = t1
means the first time we inject (2010, Obama) and
t = tn means that we have already injected all
facts.

Table 10 shows that ROME forgets facts that
have already been injected in LMs with an ex-
tremely low memorization ratio, indicating that
the parameter updating of these time-aware facts
may conflict in the same FFN module and cause the
forgetting. Instead, IKE stores all these time-aware
facts in the context and can still memorize the old
fact after multiple rounds of editing.

D Detailed Discussions

D.1 Scale up to more factual edits
Mitchell et al. (2022b); Meng et al. (2022b) find

1https://github.com/kmeng01/rome
2https://github.com/google-research/language/

tree/master/language/templama

Method Memorization Ratio (↑)

ROME 0.08 %
IKE 88.0 %

Table 10: Memorization Ratio for the oldest injected
facts after multiple rounds of editing. Parameter Updat-
ing Methods can cause catastrophic forgetting.

that gradient-based knowledge editing methods en-
counter difficulties when attempting to update mul-
tiple knowledge facts simultaneously. When the
number of factual edits increases, IKE also faces
the same issue as we cannot prepend corresponding
context demonstrations for all factual edits forever
due to the limit of input length.

Mitchell et al. (2022b) proposes a memory-based
retrieval-augmented method to handle multiple fac-
tual edits. For a given prompt, a scope classifier
can retrieve the relevant knowledge fact from an
external memory storing multiple factual edits. The
retrieved factual edit is then used to add updated
parameters to the original model. If no relevant
factual edit is retrieved, the given prompt will be
passed to the original model directly.

Similarly, IKE and retrieval augmentation can
also be a good combination. An external memory
is used to store multiple factual edits. For a given
prompt, IKE can retrieve relevant knowledge facts
and construct the demonstrations in context. Other-
wise, we directly use original LM to generate the
answer. With external memory and retrieval aug-
mentation, We only need to retain in the context the
fact that are relevant to the current prompt, along
with their corresponding demonstrations.

D.2 Generalization on facts and prompts

In IKE, the domain and format of facts and prompts
are consistent. However, in reality, facts and
prompts come in various formats and domains.
Can IKE generalize between in-consistent facts
and prompts?

In our main experiments, we assess the probabil-
ity P(o∗|x, f, C). However, in real-world scenar-
ios, prompts may have different formats than the

https://github.com/kmeng01/rome
https://github.com/google-research/language/tree/master/language/templama
https://github.com/google-research/language/tree/master/language/templama


a. New Fact: The official religion of Edwin of Northumbria is Islam

IKE: Edwin of Northumbria's religious values strongly emphasize the Islamic values of peace, justice, tolerance of all 

religions and belief, equality and freedom. He has a deep respect for the Prophet Muhammad and his companions (the 

Sahaba).  

b. New Fact: What is the twin city of Lyon? It is Manila

IKE: People in Lyon's twin city speak the language of the Philippines and are very friendly.

c. New Fact: Inner Circle railway line can be found in Singapore

IKE: Inner Circle railway line is surrounded by restaurants including The Ritz-Carlton Millenia Singapore and The St 

Regis Singapore. The railway line is also located near the Marina Bay Sands.

d. New Fact: Percy Snow, the goaltender

IKE: Percy Snow is incredible at saving pucks. He's a great goalie, and he has been for a while. He also has a very unique 

style of play. He doesn't just stop pucks and get out of the net.

e. New Fact: Pat Scully holds a citizenship from Germany

IKE: The passport that Pat Scully carries is German. The German citizenship that Pat Scully holds was granted in the 

1950s when he was a boy and is valid for a lifetime.

Figure 3: GPT-J generation examples of IKE. Prompts are italic and green parts in the generation outputs are
related to the new object o∗. Even if the formats of prompts and facts differ, IKE can still enable the LM to
generate text related to the new object.

facts. We also want the LM to generate text related
to the new object o∗ instead of simply generating
the object o∗ itself for these prompts. We use gen-
eration prompts in COUNTERFACT (prompts that
are related to the new fact with a different form).
Some generation examples are listed in Fig. 3. We
can find that IKE can generalize to prompts with
different forms and generation outputs are not sim-
ply new objects but texts related to the new objects.

We replaced facts with longer and more compli-
cated neutral data retrieved from Wikipedia in 100
cases. By replacing the entities in the facts that are
related to the original object oc with the new object
o∗, we obtain new facts.

With the retrieved neutral data, IKE gets 75 PS
on target prompts and 73 NS on neighborhood
prompts, while PROMPT (retrieval-augmentation
only, no examples) gets 65 and 64. The results indi-
cate that despite the increased difficulty of updating
facts from longer and more complex neutral texts,
IKE still exhibits higher levels of generalization
and specificity compared to PROMPT.


