# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text """ import csv import datasets _CITATION = """\ @inbook{inbook, author = {Al-Khatib, Amr and El-Beltagy, Samhaa}, year = {2018}, month = {01}, pages = {105-114}, title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II}, isbn = {978-3-319-77115-1}, doi = {10.1007/978-3-319-77116-8_8} } """ _DESCRIPTION = """\ Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text""" _HOMEPAGE = "https://github.com/AmrMehasseb/Emotional-Tone" _DOWNLOAD_URL = "https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv" class EmotoneAr(datasets.GeneratorBasedBuilder): """Dataset of 10065 tweets in Arabic for Emotions detection in Arabic text""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tweet": datasets.Value("string"), "label": datasets.features.ClassLabel( names=["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"] ), } ), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir})] def _generate_examples(self, filepath): """Generate labeled arabic tweets examples for emoptions detection.""" with open(filepath, encoding="utf-8", mode="r") as csv_file: next(csv_file) # skip header csv_reader = csv.reader(csv_file, quotechar='"', delimiter=",") for id_, row in enumerate(csv_reader): _, tweet, label = row yield id_, {"tweet": tweet, "label": label}