Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 5,978 Bytes
25109f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3f9fe
25109f8
6c3f9fe
25109f8
 
 
 
 
6c3f9fe
25109f8
 
 
 
 
 
6c3f9fe
 
 
25109f8
 
6c3f9fe
 
 
 
 
 
25109f8
 
 
 
 
 
6c3f9fe
 
 
 
 
 
 
 
 
 
25109f8
 
 
 
 
 
 
 
 
 
6c3f9fe
25109f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3f9fe
25109f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3f9fe
 
 
 
25109f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c3f9fe
 
 
25109f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The FTRACE benchmark."""


import json
import os
import textwrap

import datasets

_FTRACE_CITATION = """\
"""

_FTRACE_DESCRIPTION = """\
    Factual Tracing Dataset that contains queries and abstracts, and their corresponding ground truth.
"""

_FTRACE_ABSTRACTS_DESCRIPTION = """\
    Abstracts based on TREx dataset.
"""

_FTRACE_ABSTRACTS_LICENSE = """\
    Creative Commons Attribution-ShareAlike 4.0 International License.
see https://creativecommons.org/licenses/by-sa/4.0/"""

_FTRACE_ABSTRACTS_CITATION = """\
    @inproceedings{elsahar2018t,
  title={T-rex: A large scale alignment of natural language with knowledge base triples},
  author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena},
  booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year={2018}
}"""

_FTRACE_QUERIES_DESCRIPTION = """\
    Queries based on LAMA dataset.
"""

_FTRACE_QUERIES_CITATION = """\
    @inproceedings{petroni2019language,
  title={Language Models as Knowledge Bases?},
  author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
  booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
  year={2019}
}"""

FTRACE_QUERIES_LICENSE = """\
    The Creative Commons Attribution-Noncommercial 4.0 International License.
see https://github.com/facebookresearch/LAMA/blob/master/LICENSE"""


class FTRACEConfig(datasets.BuilderConfig):
    """BuilderConfig for FTRACE."""

    def __init__(
        self,
        features,
        data_url,
        citation,
        license,
        url,
        **kwargs,
    ):
        """BuilderConfig for FTRACE.
        Args:
          features: `list[string]`, list of the features that will appear in the
            feature dict. Should not include "label".
          data_url: `string`, url to download the zip file from.
          citation: `string`, citation for the data set.
          url: `string`, url for information about the data set.
          **kwargs: keyword arguments forwarded to super.
        """
        # Version history:
        # 0.0.2: Initial version.
        super(FTRACEConfig, self).__init__(
            version=datasets.Version("0.0.2"), **kwargs
        )
        self.features = features
        self.data_url = data_url
        self.citation = citation
        self.license = license
        self.url = url


class FTRACE(datasets.GeneratorBasedBuilder):
    """The SuperFTRACE benchmark."""

    BUILDER_CONFIGS = [
        FTRACEConfig(
            name="abstracts",
            description=_FTRACE_ABSTRACTS_DESCRIPTION,
            features=[
                "inputs_pretokenized",
                "targets_pretokenized",
                "masked_uri",
                "masked_type",
                "facts",
                "id",
                "example_uris",
                "page_uri",
            ],
            data_url="https://people.csail.mit.edu/akyurek/ftrace/abstracts.zip",
            citation=textwrap.dedent(_FTRACE_ABSTRACTS_CITATION),
            license=_FTRACE_ABSTRACTS_LICENSE,
            url="https://hadyelsahar.github.io/t-rex/",
        ),
        FTRACEConfig(
            name="queries",
            description=_FTRACE_QUERIES_DESCRIPTION,
            features=[
                "inputs_pretokenized",
                "targets_pretokenized",
                "uuid",
                "obj_uri",
                "sub_uri",
                "predicate_id",
                "sub_surface",
                "obj_surface",
            ],
            data_url="https://people.csail.mit.edu/akyurek/ftrace/queries.zip",
            citation=textwrap.dedent(_FTRACE_QUERIES_CITATION),
            license=FTRACE_QUERIES_LICENSE,
            url="https://github.com/facebookresearch/LAMA",
        ),
    ]

    def _info(self):
        features = {
            feature: datasets.Value("string")
            for feature in self.config.features
        }

        return datasets.DatasetInfo(
            description=_FTRACE_DESCRIPTION + self.config.description,
            features=datasets.Features(features),
            homepage=self.config.url,
            citation=self.config.citation + "\n" + _FTRACE_CITATION,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
        task_name = _get_task_name_from_data_url(self.config.data_url)
        dl_dir = os.path.join(dl_dir, task_name)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_file": os.path.join(dl_dir, "train.jsonl"),
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, data_file, split):
        with open(data_file, encoding="utf-8") as f:
            for idx, line in enumerate(f):
                row = json.loads(line)
                yield idx, row


def _get_task_name_from_data_url(data_url):
    if "queries" in data_url:
        return "queries"
    elif "abstracts" in data_url:
        return "abstracts"

    return "queries"