Datasets:
Modalities:
Text
Sub-tasks:
masked-language-modeling
Languages:
English
Size:
1M - 10M
ArXiv:
License:
File size: 8,666 Bytes
574436c 699143e 024798b 699143e 024798b 9639acc 024798b 6bec537 024798b 6bec537 024798b 084358f 024798b 574436c 9639acc 024798b 380a585 024798b 25e807c c269187 070b50f c269187 70cedfe 024798b c269187 70cedfe 024798b 9144d3d 024798b 9144d3d 024798b a22dd19 024798b 9144d3d 024798b e7bfee0 a22dd19 024798b e7bfee0 a22dd19 024798b a22dd19 024798b 4d4efd3 70cedfe 024798b e915b3a 024798b 9639acc 6bec537 9639acc 024798b 9639acc 024798b 9639acc 024798b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
language:
- en
license:
- cc-by-sa-4.0
- cc-by-nc-4.0
multilinguality:
- monolingual
pretty_name: FTRACE
size_categories:
- 1M<n<10M
source_datasets:
- TRex
- Lama
task_categories:
- influence-attribution
- information-retrieval
- question-answering-retrieval
task_ids:
- influence-attribution
- masked-language-modeling
---
# Dataset Card for "FTRACE"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://huggingface.co/datasets/ekinakyurek/ftrace
- **Repository:** https://github.com/ekinakyurek/influence
- **Paper:** https://arxiv.org/pdf/2205.11482.pdf
- **Point of Contact:** [Ekin Akyürek](mailto:akyurek@mit.edu)
- **Size of downloaded dataset files:** 113.7 MB
- **Size of the generated dataset:** 1006.6 MB
- **Total amount of disk used:** 1120.3 MB
### Dataset Summary
[PAPER]
FTRACE is a zero-shot infromation retrieval benchmark deviced for tracing a language model’s predictions back to training examples. In the accompanying paper, we evaluate commonly studied influence methods, including gradient-based (TracIn) and embedding-based approaches. The dataset contains two parts. First, factual queries for that we trace the knowledge are extracted from existing LAMA queries (Petroni et al., 2019). Second, Wikidata sentences are extracted from TREx corpus (Elsahar et al., 2018). We annotate the extracted sentences with their stated facts, and these facts can be mathed with the facts in query set. In both parts, we provide (input, target) pairs as a masked language modeling task -- see examples in the below. However, one can use the same data in other formalities for example auto-regressive completion via a processing of `input_pretokenized` and `targets_pretokenized` field.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### Abstracts
- **Size of downloaded dataset files:** 112 MB
- **Size of the generated dataset:** 884 MB
- **Total amount of disk used:** 996 MB
An example of 'abstract' looks as follows.
```
{"inputs_pretokenized": "The name Austroasiatic comes from the Latin words for \"south\" and \"Asia\", hence \"<extra_id_0>\".",
"targets_pretokenized": "<extra_id_0> South Asia",
"page_uri": "Q33199",
"masked_uri": "Q771405",
"masked_type": "subject",
"example_uris": "Q33199-1-Q48-Q771405-1",
"facts": "P361,Q48,Q771405;P30,Q48,Q771405",
"id": 8}
```
#### Queries
- **Size of downloaded dataset files:** 1.7 MB
- **Size of the generated dataset:** 8.9 MB
- **Total amount of disk used:** 10.6 MB
An example of 'query' looks as follows.
```
{"inputs_pretokenized": "Paul Ehrlich used to work in <extra_id_0> .",
"targets_pretokenized": "<extra_id_0> Frankfurt",
"uuid": "5b063008-a8ba-4064-9f59-e70102bb8c50",
"obj_uri": "Q1794",
"sub_uri": "Q57089",
"predicate_id": "P937",
"obj_surface": "Frankfurt",
"sub_surface": "Paul Ehrlich"}
```
### Data Fields
The data fields are the same among all splits.
#### Abstracts
- `inputs_pretokenized`: a `string` feature.
- `targets_pretokenized`: a `string` feature.
- `masked_uri`: a `string` feature.
- `masked_type`: a `string` feature.
- `facts`: a `string` feature.
- `id`: a `string` feature.
- `example_uris`: a `string` feature.
- `page_uri`: a `string` feature.
#### Queries
- `inputs_pretokenized`: a `string` feature.
- `targets_pretokenized`: a `string` feature.
- `obj_surface`: a `string` feature.
- `sub_surface`: a `string` feature.
- `obj_uri`: a `string` feature.
- `sub_uri`: a `string` feature.
- `predicate_id`: a `string` feature.
- `uuid`: a `string` feature.
### Data Splits
| name | train |
|-----------|------:|
|Abstracts |1560453|
|Queries |31479 |
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
LAMA: https://github.com/facebookresearch/LAMA
TRex: https://hadyelsahar.github.io/t-rex/
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The parts of this dataset are available under the [Creative Commons Attribution-ShareAlike License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/) and [The Creative Commons Attribution-Noncommercial 4.0 International License](https://github.com/facebookresearch/LAMA/blob/master/LICENSE)
### Citation Information
The main paper should be cited as follow:
```
@misc{https://doi.org/10.48550/arxiv.2205.11482,
doi = {10.48550/ARXIV.2205.11482},
url = {https://arxiv.org/abs/2205.11482},
author = {Akyürek, Ekin and Bolukbasi, Tolga and Liu, Frederick and Xiong, Binbin and Tenney, Ian and Andreas, Jacob and Guu, Kelvin},
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Tracing Knowledge in Language Models Back to the Training Data},
publisher = {arXiv},
year = {2022},
}
```
Please also cite Petroni et al., 2019 for the query set, and Elsahar et al., 2018 for the abstract set.
```
@inproceedings{petroni2019language,
title={Language Models as Knowledge Bases?},
author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
year={2019}
}
```
```
@inproceedings{elsahar2018t,
title={T-rex: A large scale alignment of natural language with knowledge base triples},
author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena},
booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
year={2018}
}
```
### Contributions |