Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 8,666 Bytes
574436c
699143e
024798b
699143e
 
 
024798b
 
9639acc
024798b
 
 
 
 
 
6bec537
024798b
6bec537
024798b
084358f
024798b
574436c
9639acc
024798b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
380a585
 
024798b
25e807c
c269187
 
 
070b50f
c269187
 
 
70cedfe
024798b
c269187
70cedfe
024798b
 
 
 
 
 
 
 
 
9144d3d
 
 
024798b
 
 
 
 
 
 
 
 
 
 
 
 
9144d3d
 
 
 
024798b
 
 
 
 
 
 
 
 
 
a22dd19
024798b
9144d3d
 
024798b
e7bfee0
 
 
 
 
 
 
 
a22dd19
024798b
e7bfee0
 
 
 
 
 
 
 
a22dd19
024798b
 
 
 
 
a22dd19
024798b
 
 
 
4d4efd3
70cedfe
024798b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e915b3a
024798b
9639acc
 
 
 
 
 
 
 
 
 
 
 
 
6bec537
9639acc
024798b
9639acc
 
 
 
 
 
024798b
9639acc
 
 
 
 
 
 
 
 
 
 
024798b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
language:
- en
license:
- cc-by-sa-4.0
- cc-by-nc-4.0
multilinguality:
- monolingual
pretty_name: FTRACE
size_categories:
- 1M<n<10M
source_datasets:
- TRex
- Lama
task_categories:
- influence-attribution
- information-retrieval
- question-answering-retrieval
task_ids:
- influence-attribution
- masked-language-modeling
---
# Dataset Card for "FTRACE"
## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)   

## Dataset Description

- **Homepage:** https://huggingface.co/datasets/ekinakyurek/ftrace
- **Repository:** https://github.com/ekinakyurek/influence
- **Paper:** https://arxiv.org/pdf/2205.11482.pdf
- **Point of Contact:** [Ekin Akyürek](mailto:akyurek@mit.edu)
- **Size of downloaded dataset files:** 113.7 MB
- **Size of the generated dataset:** 1006.6 MB 
- **Total amount of disk used:** 1120.3 MB 

### Dataset Summary
[PAPER]
FTRACE is a zero-shot infromation retrieval benchmark deviced for tracing a language model’s predictions back to training examples. In the accompanying paper, we evaluate commonly studied influence methods, including gradient-based (TracIn) and embedding-based approaches. The dataset contains two parts. First, factual queries for that we trace the knowledge are extracted from existing LAMA queries (Petroni et al., 2019). Second, Wikidata sentences are extracted from TREx corpus (Elsahar et al., 2018). We annotate the extracted sentences with their stated facts, and these facts can be mathed with the facts in query set. In both parts, we provide (input, target) pairs as a masked language modeling task -- see examples in the below. However, one can use the same data in other formalities for example auto-regressive completion via a processing of `input_pretokenized` and `targets_pretokenized` field.    
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### Abstracts
- **Size of downloaded dataset files:** 112 MB
- **Size of the generated dataset:** 884 MB
- **Total amount of disk used:** 996 MB   

An example of 'abstract' looks as follows.   
```
{"inputs_pretokenized": "The name Austroasiatic comes from the Latin words for \"south\" and \"Asia\", hence \"<extra_id_0>\".", 
 "targets_pretokenized": "<extra_id_0> South Asia", 
 "page_uri": "Q33199", 
 "masked_uri": "Q771405", 
 "masked_type": "subject", 
 "example_uris": "Q33199-1-Q48-Q771405-1", 
 "facts": "P361,Q48,Q771405;P30,Q48,Q771405", 
 "id": 8}
```
#### Queries
- **Size of downloaded dataset files:** 1.7 MB
- **Size of the generated dataset:** 8.9 MB
- **Total amount of disk used:** 10.6 MB   

An example of 'query' looks as follows.   

```
{"inputs_pretokenized": "Paul Ehrlich used to work in <extra_id_0> .", 
"targets_pretokenized": "<extra_id_0> Frankfurt", 
"uuid": "5b063008-a8ba-4064-9f59-e70102bb8c50", 
"obj_uri": "Q1794", 
"sub_uri": "Q57089", 
"predicate_id": "P937",
"obj_surface": "Frankfurt", 
"sub_surface": "Paul Ehrlich"}
```

### Data Fields
The data fields are the same among all splits.   

#### Abstracts
- `inputs_pretokenized`: a `string` feature.
- `targets_pretokenized`: a `string` feature.
- `masked_uri`: a `string` feature.
- `masked_type`: a `string` feature.
- `facts`: a `string` feature.
- `id`: a `string` feature.
- `example_uris`: a `string` feature.
- `page_uri`: a `string` feature.

#### Queries
- `inputs_pretokenized`: a `string` feature.
- `targets_pretokenized`: a `string` feature.
- `obj_surface`: a `string` feature.
- `sub_surface`: a `string` feature.
- `obj_uri`: a `string` feature.
- `sub_uri`: a `string` feature.
- `predicate_id`: a `string` feature.
- `uuid`: a `string` feature.

### Data Splits
|   name    | train |
|-----------|------:|
|Abstracts  |1560453|
|Queries    |31479  |

## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
LAMA: https://github.com/facebookresearch/LAMA   
TRex: https://hadyelsahar.github.io/t-rex/
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The parts of this dataset are available under the [Creative Commons Attribution-ShareAlike License (CC BY-SA 4.0)](https://creativecommons.org/licenses/by-sa/4.0/) and [The Creative Commons Attribution-Noncommercial 4.0 International License](https://github.com/facebookresearch/LAMA/blob/master/LICENSE)
### Citation Information
The main paper should be cited as follow:
```
@misc{https://doi.org/10.48550/arxiv.2205.11482,
  doi = {10.48550/ARXIV.2205.11482},
  url = {https://arxiv.org/abs/2205.11482},
  author = {Akyürek, Ekin and Bolukbasi, Tolga and Liu, Frederick and Xiong, Binbin and Tenney, Ian and Andreas, Jacob and Guu, Kelvin},
  keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Tracing Knowledge in Language Models Back to the Training Data},
  publisher = {arXiv},
  year = {2022}, 
}
```

Please also cite Petroni et al., 2019 for the query set, and Elsahar et al., 2018 for the abstract set.

```
@inproceedings{petroni2019language,
  title={Language Models as Knowledge Bases?},
  author={F. Petroni, T. Rockt{\"{a}}schel, A. H. Miller, P. Lewis, A. Bakhtin, Y. Wu and S. Riedel},
  booktitle={In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2019},
  year={2019}
}
```

```
@inproceedings{elsahar2018t,
  title={T-rex: A large scale alignment of natural language with knowledge base triples},
  author={Elsahar, Hady and Vougiouklis, Pavlos and Remaci, Arslen and Gravier, Christophe and Hare, Jonathon and Laforest, Frederique and Simperl, Elena},
  booktitle={Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year={2018}
}
```


### Contributions