{ "results": { "assin2_rte": { "f1_macro,all": 0.9227873017727286, "acc,all": 0.9227941176470589, "alias": "assin2_rte" }, "assin2_sts": { "pearson,all": 0.7796159438413869, "mse,all": 0.426936274509804, "alias": "assin2_sts" }, "bluex": { "acc,all": 0.5382475660639777, "acc,exam_id__UNICAMP_2023": 0.6046511627906976, "acc,exam_id__USP_2019": 0.425, "acc,exam_id__USP_2018": 0.46296296296296297, "acc,exam_id__USP_2020": 0.5178571428571429, "acc,exam_id__UNICAMP_2019": 0.52, "acc,exam_id__UNICAMP_2022": 0.5897435897435898, "acc,exam_id__UNICAMP_2018": 0.5370370370370371, "acc,exam_id__UNICAMP_2020": 0.5818181818181818, "acc,exam_id__USP_2021": 0.4807692307692308, "acc,exam_id__USP_2023": 0.5909090909090909, "acc,exam_id__UNICAMP_2024": 0.5333333333333333, "acc,exam_id__UNICAMP_2021_1": 0.5434782608695652, "acc,exam_id__USP_2022": 0.4897959183673469, "acc,exam_id__UNICAMP_2021_2": 0.49019607843137253, "acc,exam_id__USP_2024": 0.7560975609756098, "alias": "bluex" }, "enem_challenge": { "alias": "enem", "acc,all": 0.6382085374387684, "acc,exam_id__2017": 0.6724137931034483, "acc,exam_id__2014": 0.6146788990825688, "acc,exam_id__2010": 0.6837606837606838, "acc,exam_id__2011": 0.6666666666666666, "acc,exam_id__2015": 0.6218487394957983, "acc,exam_id__2013": 0.6944444444444444, "acc,exam_id__2023": 0.6370370370370371, "acc,exam_id__2022": 0.6090225563909775, "acc,exam_id__2016_2": 0.6097560975609756, "acc,exam_id__2012": 0.6293103448275862, "acc,exam_id__2016": 0.5785123966942148, "acc,exam_id__2009": 0.6521739130434783 }, "faquad_nli": { "f1_macro,all": 0.7812802842683321, "acc,all": 0.8461538461538461, "alias": "faquad_nli" }, "hatebr_offensive": { "alias": "hatebr_offensive_binary", "f1_macro,all": 0.8163838486760461, "acc,all": 0.8207142857142857 }, "oab_exams": { "acc,all": 0.4154897494305239, "acc,exam_id__2015-17": 0.5, "acc,exam_id__2015-18": 0.425, "acc,exam_id__2014-14": 0.525, "acc,exam_id__2012-09": 0.33766233766233766, "acc,exam_id__2016-20a": 0.35, "acc,exam_id__2012-06": 0.475, "acc,exam_id__2017-23": 0.45, "acc,exam_id__2010-01": 0.36470588235294116, "acc,exam_id__2011-04": 0.4, "acc,exam_id__2011-05": 0.45, "acc,exam_id__2014-13": 0.325, "acc,exam_id__2016-20": 0.3625, "acc,exam_id__2013-10": 0.4, "acc,exam_id__2016-19": 0.5, "acc,exam_id__2016-21": 0.3625, "acc,exam_id__2012-06a": 0.35, "acc,exam_id__2012-07": 0.3625, "acc,exam_id__2015-16": 0.375, "acc,exam_id__2013-11": 0.45, "acc,exam_id__2018-25": 0.4625, "acc,exam_id__2017-24": 0.3625, "acc,exam_id__2010-02": 0.42, "acc,exam_id__2012-08": 0.4125, "acc,exam_id__2014-15": 0.47435897435897434, "acc,exam_id__2011-03": 0.35353535353535354, "acc,exam_id__2013-12": 0.45, "acc,exam_id__2017-22": 0.5375, "alias": "oab_exams" }, "portuguese_hate_speech": { "alias": "portuguese_hate_speech_binary", "f1_macro,all": 0.7065502576224769, "acc,all": 0.7567567567567568 }, "tweetsentbr": { "f1_macro,all": 0.49494721606080616, "acc,all": 0.7074626865671642, "alias": "tweetsentbr" } }, "configs": { "assin2_rte": { "task": "assin2_rte", "group": [ "pt_benchmark", "assin2" ], "dataset_path": "assin2", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Premissa: {{premise}}\nHipótese: {{hypothesis}}\nPergunta: A hipótese pode ser inferida pela premissa? Sim ou Não?\nResposta:", "doc_to_target": "{{['Não', 'Sim'][entailment_judgment]}}", "description": "Abaixo estão pares de premissa e hipótese. Para cada par, indique se a hipótese pode ser inferida a partir da premissa, responda apenas com \"Sim\" ou \"Não\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ 1, 3251, 2, 3252, 3, 4, 5, 6, 3253, 7, 3254, 3255, 3256, 8, 9, 10, 3257, 11, 3258, 12, 13, 14, 15, 3259, 3260, 3261, 3262, 3263, 16, 17, 3264, 18, 3265, 3266, 3267, 19, 20, 3268, 3269, 21, 3270, 3271, 22, 3272, 3273, 23, 3274, 24, 25, 3275 ], "id_column": "sentence_pair_id" } }, "num_fewshot": 15, "metric_list": [ { "metric": "f1_macro", "aggregation": "f1_macro", "higher_is_better": true }, { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "find_similar_label", "labels": [ "Sim", "Não" ] }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.1 } }, "assin2_sts": { "task": "assin2_sts", "group": [ "pt_benchmark", "assin2" ], "dataset_path": "assin2", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Frase 1: {{premise}}\nFrase 2: {{hypothesis}}\nPergunta: Quão similares são as duas frases? Dê uma pontuação entre 1,0 a 5,0.\nResposta:", "doc_to_target": "", "description": "Abaixo estão pares de frases que você deve avaliar o grau de similaridade. Dê uma pontuação entre 1,0 e 5,0, sendo 1,0 pouco similar e 5,0 muito similar.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ 1, 3251, 2, 3252, 3, 4, 5, 6, 3253, 7, 3254, 3255, 3256, 8, 9, 10, 3257, 11, 3258, 12, 13, 14, 15, 3259, 3260, 3261, 3262, 3263, 16, 17, 3264, 18, 3265, 3266, 3267, 19, 20, 3268, 3269, 21, 3270, 3271, 22, 3272, 3273, 23, 3274, 24, 25, 3275 ], "id_column": "sentence_pair_id" } }, "num_fewshot": 15, "metric_list": [ { "metric": "pearson", "aggregation": "pearsonr", "higher_is_better": true }, { "metric": "mse", "aggregation": "mean_squared_error", "higher_is_better": false } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "number_filter", "type": "float", "range_min": 1.0, "range_max": 5.0, "on_outside_range": "clip", "fallback": 5.0 }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.1 } }, "bluex": { "task": "bluex", "group": [ "pt_benchmark", "vestibular" ], "dataset_path": "eduagarcia-temp/BLUEX_without_images", "test_split": "train", "fewshot_split": "train", "doc_to_text": "", "doc_to_target": "{{answerKey}}", "description": "As perguntas a seguir são questões de múltipla escolha de provas de vestibular de universidades brasileiras, selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\", \"D\" ou \"E\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ "USP_2018_3", "UNICAMP_2018_2", "USP_2018_35", "UNICAMP_2018_16", "USP_2018_89" ], "id_column": "id", "exclude_from_task": true } }, "num_fewshot": 3, "metric_list": [ { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "normalize_spaces" }, { "function": "remove_accents" }, { "function": "find_choices", "choices": [ "A", "B", "C", "D", "E" ], "regex_patterns": [ "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", "\\b([ABCDE])\\.", "\\b([ABCDE]) ?[.):-]", "\\b([ABCDE])$", "\\b([ABCDE])\\b" ] }, { "function": "take_first" } ], "group_by": { "column": "exam_id" } } ], "should_decontaminate": true, "doc_to_decontamination_query": "", "metadata": { "version": 1.1 } }, "enem_challenge": { "task": "enem_challenge", "task_alias": "enem", "group": [ "pt_benchmark", "vestibular" ], "dataset_path": "eduagarcia/enem_challenge", "test_split": "train", "fewshot_split": "train", "doc_to_text": "", "doc_to_target": "{{answerKey}}", "description": "As perguntas a seguir são questões de múltipla escolha do Exame Nacional do Ensino Médio (ENEM), selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\", \"D\" ou \"E\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ "2022_21", "2022_88", "2022_143" ], "id_column": "id", "exclude_from_task": true } }, "num_fewshot": 3, "metric_list": [ { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "normalize_spaces" }, { "function": "remove_accents" }, { "function": "find_choices", "choices": [ "A", "B", "C", "D", "E" ], "regex_patterns": [ "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b", "\\b([ABCDE])\\.", "\\b([ABCDE]) ?[.):-]", "\\b([ABCDE])$", "\\b([ABCDE])\\b" ] }, { "function": "take_first" } ], "group_by": { "column": "exam_id" } } ], "should_decontaminate": true, "doc_to_decontamination_query": "", "metadata": { "version": 1.1 } }, "faquad_nli": { "task": "faquad_nli", "group": [ "pt_benchmark" ], "dataset_path": "ruanchaves/faquad-nli", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Pergunta: {{question}}\nResposta: {{answer}}\nA resposta dada satisfaz à pergunta? Sim ou Não?", "doc_to_target": "{{['Não', 'Sim'][label]}}", "description": "Abaixo estão pares de pergunta e resposta. Para cada par, você deve julgar se a resposta responde à pergunta de maneira satisfatória e aparenta estar correta. Escreva apenas \"Sim\" ou \"Não\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n", "sampler_config": { "fewshot_indices": [ 1893, 949, 663, 105, 1169, 2910, 2227, 2813, 974, 558, 1503, 1958, 2918, 601, 1560, 984, 2388, 995, 2233, 1982, 165, 2788, 1312, 2285, 522, 1113, 1670, 323, 236, 1263, 1562, 2519, 1049, 432, 1167, 1394, 2022, 2551, 2194, 2187, 2282, 2816, 108, 301, 1185, 1315, 1420, 2436, 2322, 766 ] } }, "num_fewshot": 15, "metric_list": [ { "metric": "f1_macro", "aggregation": "f1_macro", "higher_is_better": true }, { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "find_similar_label", "labels": [ "Sim", "Não" ] }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.1 } }, "hatebr_offensive": { "task": "hatebr_offensive", "task_alias": "hatebr_offensive_binary", "group": [ "pt_benchmark" ], "dataset_path": "eduagarcia/portuguese_benchmark", "dataset_name": "HateBR_offensive_binary", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Texto: {{sentence}}\nPergunta: O texto é ofensivo?\nResposta:", "doc_to_target": "{{'Sim' if label == 1 else 'Não'}}", "description": "Abaixo contém o texto de comentários de usuários do Instagram em português, sua tarefa é classificar se o texto é ofensivo ou não. Responda apenas com \"Sim\" ou \"Não\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ 48, 44, 36, 20, 3511, 88, 3555, 16, 56, 3535, 60, 40, 3527, 4, 76, 3579, 3523, 3551, 68, 3503, 84, 3539, 64, 3599, 80, 3563, 3559, 3543, 3547, 3587, 3595, 3575, 3567, 3591, 24, 96, 92, 3507, 52, 72, 8, 3571, 3515, 3519, 3531, 28, 32, 0, 12, 3583 ], "id_column": "idx" } }, "num_fewshot": 25, "metric_list": [ { "metric": "f1_macro", "aggregation": "f1_macro", "higher_is_better": true }, { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "find_similar_label", "labels": [ "Sim", "Não" ] }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "oab_exams": { "task": "oab_exams", "group": [ "legal_benchmark", "pt_benchmark" ], "dataset_path": "eduagarcia/oab_exams", "test_split": "train", "fewshot_split": "train", "doc_to_text": "", "doc_to_target": "{{answerKey}}", "description": "As perguntas a seguir são questões de múltipla escolha do Exame de Ordem da Ordem dos Advogados do Brasil (OAB), selecione a única alternativa correta e responda apenas com as letras \"A\", \"B\", \"C\" ou \"D\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ "2010-01_1", "2010-01_11", "2010-01_13", "2010-01_23", "2010-01_26", "2010-01_28", "2010-01_38", "2010-01_48", "2010-01_58", "2010-01_68", "2010-01_76", "2010-01_83", "2010-01_85", "2010-01_91", "2010-01_99" ], "id_column": "id", "exclude_from_task": true } }, "num_fewshot": 3, "metric_list": [ { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "normalize_spaces" }, { "function": "remove_accents" }, { "function": "find_choices", "choices": [ "A", "B", "C", "D" ], "regex_patterns": [ "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta [Cc]orreta e|[Oo]pcao):? ([ABCD])\\b", "\\b([ABCD])\\.", "\\b([ABCD]) ?[.):-]", "\\b([ABCD])$", "\\b([ABCD])\\b" ] }, { "function": "take_first" } ], "group_by": { "column": "exam_id" } } ], "should_decontaminate": true, "doc_to_decontamination_query": "", "metadata": { "version": 1.5 } }, "portuguese_hate_speech": { "task": "portuguese_hate_speech", "task_alias": "portuguese_hate_speech_binary", "group": [ "pt_benchmark" ], "dataset_path": "eduagarcia/portuguese_benchmark", "dataset_name": "Portuguese_Hate_Speech_binary", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Texto: {{sentence}}\nPergunta: O texto contém discurso de ódio?\nResposta:", "doc_to_target": "{{'Sim' if label == 1 else 'Não'}}", "description": "Abaixo contém o texto de tweets de usuários do Twitter em português, sua tarefa é classificar se o texto contém discurso de ódio ou não. Responda apenas com \"Sim\" ou \"Não\".\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "id_sampler", "sampler_config": { "id_list": [ 52, 50, 39, 28, 3, 105, 22, 25, 60, 11, 66, 41, 9, 4, 91, 42, 7, 20, 76, 1, 104, 13, 67, 54, 97, 27, 24, 14, 16, 48, 53, 40, 34, 49, 32, 119, 114, 2, 58, 83, 18, 36, 5, 6, 10, 35, 38, 0, 21, 46 ], "id_column": "idx" } }, "num_fewshot": 25, "metric_list": [ { "metric": "f1_macro", "aggregation": "f1_macro", "higher_is_better": true }, { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "find_similar_label", "labels": [ "Sim", "Não" ] }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } }, "tweetsentbr": { "task": "tweetsentbr", "group": [ "pt_benchmark" ], "dataset_path": "eduagarcia/tweetsentbr_fewshot", "test_split": "test", "fewshot_split": "train", "doc_to_text": "Texto: {{sentence}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:", "doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}", "description": "Abaixo contém o texto de tweets de usuários do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n", "target_delimiter": " ", "fewshot_delimiter": "\n\n", "fewshot_config": { "sampler": "first_n" }, "num_fewshot": 25, "metric_list": [ { "metric": "f1_macro", "aggregation": "f1_macro", "higher_is_better": true }, { "metric": "acc", "aggregation": "acc", "higher_is_better": true } ], "output_type": "generate_until", "generation_kwargs": { "max_gen_toks": 32, "do_sample": false, "temperature": 0.0, "top_k": null, "top_p": null, "until": [ "\n\n" ] }, "repeats": 1, "filter_list": [ { "name": "all", "filter": [ { "function": "find_similar_label", "labels": [ "Positivo", "Neutro", "Negativo" ] }, { "function": "take_first" } ] } ], "should_decontaminate": false, "metadata": { "version": 1.0 } } }, "versions": { "assin2_rte": 1.1, "assin2_sts": 1.1, "bluex": 1.1, "enem_challenge": 1.1, "faquad_nli": 1.1, "hatebr_offensive": 1.0, "oab_exams": 1.5, "portuguese_hate_speech": 1.0, "tweetsentbr": 1.0 }, "n-shot": { "assin2_rte": 15, "assin2_sts": 15, "bluex": 3, "enem_challenge": 3, "faquad_nli": 15, "hatebr_offensive": 25, "oab_exams": 3, "portuguese_hate_speech": 25, "tweetsentbr": 25 }, "model_meta": { "truncated": 1, "non_truncated": 14149, "padded": 0, "non_padded": 14150, "fewshots_truncated": 1, "has_chat_template": false, "chat_type": null, "n_gpus": 1, "accelerate_num_process": null, "model_sha": "bb3bd36fce162f472668dbd91960cd1525b45f30", "model_dtype": "torch.bfloat16", "model_memory_footprint": 15020343296, "model_num_parameters": 7241732096, "model_is_loaded_in_4bit": null, "model_is_loaded_in_8bit": null, "model_is_quantized": null, "model_device": "cuda:0", "batch_size": 8, "max_length": 2560, "max_ctx_length": 2528, "max_gen_toks": 32 }, "task_model_meta": { "assin2_rte": { "sample_size": 2448, "truncated": 0, "non_truncated": 2448, "padded": 0, "non_padded": 2448, "fewshots_truncated": 0, "mean_seq_length": 1369.7455065359477, "min_seq_length": 1346, "max_seq_length": 1436, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 15.0, "mean_effective_fewshot_size": 15.0 }, "assin2_sts": { "sample_size": 2448, "truncated": 0, "non_truncated": 2448, "padded": 0, "non_padded": 2448, "fewshots_truncated": 0, "mean_seq_length": 1593.7455065359477, "min_seq_length": 1570, "max_seq_length": 1660, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 15.0, "mean_effective_fewshot_size": 15.0 }, "bluex": { "sample_size": 719, "truncated": 0, "non_truncated": 719, "padded": 0, "non_padded": 719, "fewshots_truncated": 0, "mean_seq_length": 1719.9262865090404, "min_seq_length": 1343, "max_seq_length": 2520, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 3.0, "mean_effective_fewshot_size": 3.0 }, "enem_challenge": { "sample_size": 1429, "truncated": 1, "non_truncated": 1428, "padded": 0, "non_padded": 1429, "fewshots_truncated": 1, "mean_seq_length": 1620.039188243527, "min_seq_length": 1354, "max_seq_length": 2618, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 3.0, "mean_effective_fewshot_size": 2.9993002099370187 }, "faquad_nli": { "sample_size": 650, "truncated": 0, "non_truncated": 650, "padded": 0, "non_padded": 650, "fewshots_truncated": 0, "mean_seq_length": 1594.9876923076922, "min_seq_length": 1539, "max_seq_length": 1715, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 15.0, "mean_effective_fewshot_size": 15.0 }, "hatebr_offensive": { "sample_size": 1400, "truncated": 0, "non_truncated": 1400, "padded": 0, "non_padded": 1400, "fewshots_truncated": 0, "mean_seq_length": 1305.3878571428572, "min_seq_length": 1282, "max_seq_length": 1556, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 25.0, "mean_effective_fewshot_size": 25.0 }, "oab_exams": { "sample_size": 2195, "truncated": 0, "non_truncated": 2195, "padded": 0, "non_padded": 2195, "fewshots_truncated": 0, "mean_seq_length": 1365.764464692483, "min_seq_length": 1099, "max_seq_length": 1868, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 3.0, "mean_effective_fewshot_size": 3.0 }, "portuguese_hate_speech": { "sample_size": 851, "truncated": 0, "non_truncated": 851, "padded": 0, "non_padded": 851, "fewshots_truncated": 0, "mean_seq_length": 1806.3360752056403, "min_seq_length": 1771, "max_seq_length": 1845, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 25.0, "mean_effective_fewshot_size": 25.0 }, "tweetsentbr": { "sample_size": 2010, "truncated": 0, "non_truncated": 2010, "padded": 0, "non_padded": 2010, "fewshots_truncated": 0, "mean_seq_length": 1552.2492537313433, "min_seq_length": 1531, "max_seq_length": 1647, "max_ctx_length": 2528, "max_gen_toks": 32, "mean_original_fewshots_size": 25.0, "mean_effective_fewshot_size": 25.0 } }, "config": { "model": "huggingface", "model_args": "pretrained=Kukedlc/NeuralSynthesis-7b-v0.4-slerp,dtype=bfloat16,device=cuda:0,revision=bb3bd36fce162f472668dbd91960cd1525b45f30,trust_remote_code=True,starting_max_length=2560", "batch_size": "auto", "batch_sizes": [], "device": null, "use_cache": null, "limit": [ null, null, null, null, null, null, null, null, null ], "bootstrap_iters": 0, "gen_kwargs": null }, "git_hash": "2d67fba" }