{
  "results": {
    "assin2_rte": {
      "f1_macro,all": 0.3333333333333333,
      "acc,all": 0.5,
      "alias": "assin2_rte"
    },
    "assin2_sts": {
      "pearson,all": 0.0393820346422743,
      "mse,all": 1.782410130718954,
      "alias": "assin2_sts"
    },
    "bluex": {
      "acc,all": 0.1571627260083449,
      "acc,exam_id__UNICAMP_2022": 0.20512820512820512,
      "acc,exam_id__UNICAMP_2019": 0.14,
      "acc,exam_id__UNICAMP_2023": 0.046511627906976744,
      "acc,exam_id__UNICAMP_2018": 0.2037037037037037,
      "acc,exam_id__UNICAMP_2020": 0.10909090909090909,
      "acc,exam_id__USP_2024": 0.12195121951219512,
      "acc,exam_id__UNICAMP_2021_2": 0.0784313725490196,
      "acc,exam_id__USP_2022": 0.1836734693877551,
      "acc,exam_id__USP_2019": 0.15,
      "acc,exam_id__USP_2021": 0.17307692307692307,
      "acc,exam_id__USP_2023": 0.20454545454545456,
      "acc,exam_id__UNICAMP_2021_1": 0.21739130434782608,
      "acc,exam_id__UNICAMP_2024": 0.2222222222222222,
      "acc,exam_id__USP_2020": 0.16071428571428573,
      "acc,exam_id__USP_2018": 0.14814814814814814,
      "alias": "bluex"
    },
    "enem_challenge": {
      "alias": "enem",
      "acc,all": 0.1980405878236529,
      "acc,exam_id__2015": 0.15126050420168066,
      "acc,exam_id__2012": 0.21551724137931033,
      "acc,exam_id__2017": 0.20689655172413793,
      "acc,exam_id__2009": 0.28695652173913044,
      "acc,exam_id__2023": 0.2,
      "acc,exam_id__2016_2": 0.15447154471544716,
      "acc,exam_id__2010": 0.24786324786324787,
      "acc,exam_id__2014": 0.1834862385321101,
      "acc,exam_id__2013": 0.19444444444444445,
      "acc,exam_id__2022": 0.21804511278195488,
      "acc,exam_id__2011": 0.1794871794871795,
      "acc,exam_id__2016": 0.14049586776859505
    },
    "faquad_nli": {
      "f1_macro,all": 0.4396551724137931,
      "acc,all": 0.7846153846153846,
      "alias": "faquad_nli"
    },
    "oab_exams": {
      "acc,all": 0.23599088838268792,
      "acc,exam_id__2012-06a": 0.2625,
      "acc,exam_id__2015-17": 0.24358974358974358,
      "acc,exam_id__2012-06": 0.225,
      "acc,exam_id__2014-15": 0.23076923076923078,
      "acc,exam_id__2016-20": 0.2125,
      "acc,exam_id__2013-10": 0.1875,
      "acc,exam_id__2012-07": 0.1625,
      "acc,exam_id__2011-03": 0.26262626262626265,
      "acc,exam_id__2011-05": 0.2125,
      "acc,exam_id__2016-19": 0.23076923076923078,
      "acc,exam_id__2017-23": 0.275,
      "acc,exam_id__2017-22": 0.25,
      "acc,exam_id__2018-25": 0.2625,
      "acc,exam_id__2014-13": 0.2375,
      "acc,exam_id__2017-24": 0.225,
      "acc,exam_id__2010-01": 0.2823529411764706,
      "acc,exam_id__2014-14": 0.225,
      "acc,exam_id__2011-04": 0.275,
      "acc,exam_id__2013-12": 0.2,
      "acc,exam_id__2015-16": 0.1875,
      "acc,exam_id__2016-21": 0.225,
      "acc,exam_id__2013-11": 0.1625,
      "acc,exam_id__2012-08": 0.225,
      "acc,exam_id__2016-20a": 0.275,
      "acc,exam_id__2012-09": 0.2857142857142857,
      "acc,exam_id__2010-02": 0.25,
      "acc,exam_id__2015-18": 0.2875,
      "alias": "oab_exams"
    },
    "sparrow_emotion-2021-cortiz-por": {
      "alias": "emotion-2021-cortiz-por",
      "f1_macro,all": 0.014996078482920588,
      "acc,all": 0.06
    },
    "sparrow_hate-2019-fortuna-por": {
      "alias": "hate-2019-fortuna-por",
      "f1_macro,all": 0.3932038834951456,
      "acc,all": 0.648
    },
    "sparrow_sentiment-2016-mozetic-por": {
      "alias": "sentiment-2016-mozetic-por",
      "f1_macro,all": 0.07000935016362786,
      "acc,all": 0.114
    },
    "sparrow_sentiment-2018-brum-por": {
      "alias": "sentiment-2018-brum-por",
      "f1_macro,all": 0.17251289588659344,
      "acc,all": 0.262
    }
  },
  "configs": {
    "assin2_rte": {
      "task": "assin2_rte",
      "group": [
        "pt_benchmark",
        "assin2"
      ],
      "dataset_path": "assin2",
      "test_split": "test",
      "fewshot_split": "train",
      "doc_to_text": "Premissa: {{premise}}\nHipótese: {{hypothesis}}\nPergunta: A hipótese pode ser inferida pela premissa?\nResposta:",
      "doc_to_target": "{{['Não', 'Sim'][entailment_judgment]}}",
      "description": "Abaixo contém pares de premissa e hipótese, para cada par você deve julgar se a hipótese pode ser inferida a partir da premissa, responda apenas com Sim ou Não.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "id_sampler",
        "sampler_config": {
          "id_list": [
            1,
            3251,
            2,
            3252,
            3,
            4,
            5,
            6,
            3253,
            7,
            3254,
            3255,
            3256,
            8,
            9,
            10,
            3257,
            11,
            3258,
            12,
            13,
            14,
            15,
            3259,
            3260,
            3261,
            3262,
            3263,
            16,
            17,
            3264,
            18,
            3265,
            3266,
            3267,
            19,
            20,
            3268,
            3269,
            21,
            3270,
            3271,
            22,
            3272,
            3273,
            23,
            3274,
            24,
            25,
            3275
          ],
          "id_column": "sentence_pair_id"
        }
      },
      "num_fewshot": 15,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Sim",
                "Não"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "assin2_sts": {
      "task": "assin2_sts",
      "group": [
        "pt_benchmark",
        "assin2"
      ],
      "dataset_path": "assin2",
      "test_split": "test",
      "fewshot_split": "train",
      "doc_to_text": "Frase 1: {{premise}}\nFrase 2: {{hypothesis}}\nPergunta: Qual o grau de similaridade entre as duas frases de 1,0 a 5,0?\nResposta:",
      "doc_to_target": "<function assin2_float_to_pt_str at 0x7f96ddc11800>",
      "description": "Abaixo contém pares de frases, para cada par você deve julgar o grau de similaridade de 1,0 a 5,0, responda apenas com o número.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "id_sampler",
        "sampler_config": {
          "id_list": [
            1,
            3251,
            2,
            3252,
            3,
            4,
            5,
            6,
            3253,
            7,
            3254,
            3255,
            3256,
            8,
            9,
            10,
            3257,
            11,
            3258,
            12,
            13,
            14,
            15,
            3259,
            3260,
            3261,
            3262,
            3263,
            16,
            17,
            3264,
            18,
            3265,
            3266,
            3267,
            19,
            20,
            3268,
            3269,
            21,
            3270,
            3271,
            22,
            3272,
            3273,
            23,
            3274,
            24,
            25,
            3275
          ],
          "id_column": "sentence_pair_id"
        }
      },
      "num_fewshot": 15,
      "metric_list": [
        {
          "metric": "pearson",
          "aggregation": "pearsonr",
          "higher_is_better": true
        },
        {
          "metric": "mse",
          "aggregation": "mean_squared_error",
          "higher_is_better": false
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "number_filter",
              "type": "float",
              "range_min": 1.0,
              "range_max": 5.0,
              "on_outside_range": "clip",
              "fallback": 5.0
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "bluex": {
      "task": "bluex",
      "group": [
        "pt_benchmark",
        "vestibular"
      ],
      "dataset_path": "eduagarcia-temp/BLUEX_without_images",
      "test_split": "train",
      "fewshot_split": "train",
      "doc_to_text": "<function enem_doc_to_text at 0x7f96ddc111c0>",
      "doc_to_target": "{{answerKey}}",
      "description": "As perguntas a seguir são questões de multipla escolha de provas de vestibular de Universidades Brasileiras, reponda apenas com as letras A, B, C, D ou E.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "id_sampler",
        "sampler_config": {
          "id_list": [
            "USP_2018_3",
            "UNICAMP_2018_2",
            "USP_2018_35",
            "UNICAMP_2018_16",
            "USP_2018_89"
          ],
          "id_column": "id",
          "exclude_from_task": true
        }
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "normalize_spaces"
            },
            {
              "function": "remove_accents"
            },
            {
              "function": "find_choices",
              "choices": [
                "A",
                "B",
                "C",
                "D",
                "E"
              ],
              "regex_patterns": [
                "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b",
                "\\b([ABCDE])\\.",
                "\\b([ABCDE]) ?[.):-]",
                "\\b([ABCDE])$",
                "\\b([ABCDE])\\b"
              ]
            },
            {
              "function": "take_first"
            }
          ],
          "group_by": {
            "column": "exam_id"
          }
        }
      ],
      "should_decontaminate": true,
      "doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f96ddc11440>",
      "metadata": {
        "version": 1.0
      }
    },
    "enem_challenge": {
      "task": "enem_challenge",
      "task_alias": "enem",
      "group": [
        "pt_benchmark",
        "vestibular"
      ],
      "dataset_path": "eduagarcia/enem_challenge",
      "test_split": "train",
      "fewshot_split": "train",
      "doc_to_text": "<function enem_doc_to_text at 0x7f96ddc119e0>",
      "doc_to_target": "{{answerKey}}",
      "description": "As perguntas a seguir são questões de multipla escolha do Exame Nacional do Ensino Médio (ENEM), reponda apenas com as letras A, B, C, D ou E.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "id_sampler",
        "sampler_config": {
          "id_list": [
            "2022_21",
            "2022_88",
            "2022_143"
          ],
          "id_column": "id",
          "exclude_from_task": true
        }
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "normalize_spaces"
            },
            {
              "function": "remove_accents"
            },
            {
              "function": "find_choices",
              "choices": [
                "A",
                "B",
                "C",
                "D",
                "E"
              ],
              "regex_patterns": [
                "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCDE])\\b",
                "\\b([ABCDE])\\.",
                "\\b([ABCDE]) ?[.):-]",
                "\\b([ABCDE])$",
                "\\b([ABCDE])\\b"
              ]
            },
            {
              "function": "take_first"
            }
          ],
          "group_by": {
            "column": "exam_id"
          }
        }
      ],
      "should_decontaminate": true,
      "doc_to_decontamination_query": "<function enem_doc_to_text at 0x7f96ddc11c60>",
      "metadata": {
        "version": 1.0
      }
    },
    "faquad_nli": {
      "task": "faquad_nli",
      "group": [
        "pt_benchmark"
      ],
      "dataset_path": "ruanchaves/faquad-nli",
      "test_split": "test",
      "fewshot_split": "train",
      "doc_to_text": "Pergunta: {{question}}\nResposta: {{answer}}\nA resposta satisfaz a pergunta? Sim ou Não?",
      "doc_to_target": "{{['Não', 'Sim'][label]}}",
      "description": "Abaixo contém pares de pergunta e reposta, para cada par você deve julgar resposta responde a pergunta de maneira satisfatória e aparenta estar correta, escreva apenas Sim ou Não.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n",
        "sampler_config": {
          "fewshot_indices": [
            1893,
            949,
            663,
            105,
            1169,
            2910,
            2227,
            2813,
            974,
            558,
            1503,
            1958,
            2918,
            601,
            1560,
            984,
            2388,
            995,
            2233,
            1982,
            165,
            2788,
            1312,
            2285,
            522,
            1113,
            1670,
            323,
            236,
            1263,
            1562,
            2519,
            1049,
            432,
            1167,
            1394,
            2022,
            2551,
            2194,
            2187,
            2282,
            2816,
            108,
            301,
            1185,
            1315,
            1420,
            2436,
            2322,
            766
          ]
        }
      },
      "num_fewshot": 15,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Sim",
                "Não"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "metadata": {
        "version": 1.0
      }
    },
    "oab_exams": {
      "task": "oab_exams",
      "group": [
        "legal_benchmark",
        "pt_benchmark"
      ],
      "dataset_path": "eduagarcia/oab_exams",
      "test_split": "train",
      "fewshot_split": "train",
      "doc_to_text": "<function doc_to_text at 0x7f96ddc10b80>",
      "doc_to_target": "{{answerKey}}",
      "description": "As perguntas a seguir são questões de multipla escolha do Exame de Ordem da Ordem dos Advogados do Brasil (OAB), reponda apenas com as letras A, B, C ou D.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "id_sampler",
        "sampler_config": {
          "id_list": [
            "2010-01_1",
            "2010-01_11",
            "2010-01_13",
            "2010-01_23",
            "2010-01_26",
            "2010-01_28",
            "2010-01_38",
            "2010-01_48",
            "2010-01_58",
            "2010-01_68",
            "2010-01_76",
            "2010-01_83",
            "2010-01_85",
            "2010-01_91",
            "2010-01_99"
          ],
          "id_column": "id",
          "exclude_from_task": true
        }
      },
      "num_fewshot": 3,
      "metric_list": [
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "normalize_spaces"
            },
            {
              "function": "remove_accents"
            },
            {
              "function": "find_choices",
              "choices": [
                "A",
                "B",
                "C",
                "D"
              ],
              "regex_patterns": [
                "(?:[Ll]etra|[Aa]lternativa|[Rr]esposta|[Rr]esposta [Cc]orreta|[Rr]esposta[Cc]orreta e|[Oo]pcao):? ([ABCD])\\b",
                "\\b([ABCD])\\)",
                "\\b([ABCD]) ?[.):-]",
                "\\b([ABCD])$",
                "\\b([ABCD])\\b"
              ]
            },
            {
              "function": "take_first"
            }
          ],
          "group_by": {
            "column": "exam_id"
          }
        }
      ],
      "should_decontaminate": true,
      "doc_to_decontamination_query": "<function doc_to_text at 0x7f96ddc10e00>",
      "metadata": {
        "version": 1.4
      }
    },
    "sparrow_emotion-2021-cortiz-por": {
      "task": "sparrow_emotion-2021-cortiz-por",
      "task_alias": "emotion-2021-cortiz-por",
      "group": [
        "pt_benchmark",
        "sparrow"
      ],
      "dataset_path": "UBC-NLP/sparrow",
      "dataset_name": "emotion-2021-cortiz-por",
      "test_split": "validation",
      "fewshot_split": "train",
      "doc_to_text": "Texto: {{content}}\nPergunta: Qual a principal emoção apresentada no texto?\nResposta:",
      "doc_to_target": "<function sparrow_emotion_por_trans_label at 0x7f96ddc11080>",
      "description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é extrair qual a principal emoção dos textos. Responda com apenas uma das seguintes opções:\n Admiração, Diversão, Raiva, Aborrecimento, Aprovação, Compaixão, Confusão, Curiosidade, Desejo, Decepção, Desaprovação, Nojo, Vergonha, Inveja, Entusiasmo, Medo, Gratidão, Luto, Alegria, Saudade, Amor, Nervosismo, Otimismo, Orgulho, Alívio, Remorso, Tristeza ou Surpresa.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 25,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Admiração",
                "Diversão",
                "Raiva",
                "Aborrecimento",
                "Aprovação",
                "Compaixão",
                "Confusão",
                "Curiosidade",
                "Desejo",
                "Decepção",
                "Desaprovação",
                "Nojo",
                " Vergonha",
                "Inveja",
                "Entusiasmo",
                "Medo",
                "Gratidão",
                "Luto",
                "Alegria",
                "Saudade",
                "Amor",
                "Nervosismo",
                "Otimismo",
                "Orgulho",
                "Alívio",
                "Remorso",
                "Tristeza",
                "Surpresa"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "limit": 500,
      "metadata": {
        "version": 1.0
      }
    },
    "sparrow_hate-2019-fortuna-por": {
      "task": "sparrow_hate-2019-fortuna-por",
      "task_alias": "hate-2019-fortuna-por",
      "group": [
        "pt_benchmark",
        "sparrow"
      ],
      "dataset_path": "UBC-NLP/sparrow",
      "dataset_name": "hate-2019-fortuna-por",
      "test_split": "validation",
      "fewshot_split": "train",
      "doc_to_text": "Texto: {{content}}\nPergunta: O texto contém discurso de ódio?\nResposta:",
      "doc_to_target": "{{'Sim' if label == 'Hate' else 'Não'}}",
      "description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o texto contem discurso de ódio our não. Responda apenas com Sim ou Não.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 25,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Sim",
                "Não"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "limit": 500,
      "metadata": {
        "version": 1.0
      }
    },
    "sparrow_sentiment-2016-mozetic-por": {
      "task": "sparrow_sentiment-2016-mozetic-por",
      "task_alias": "sentiment-2016-mozetic-por",
      "group": [
        "pt_benchmark",
        "sparrow"
      ],
      "dataset_path": "UBC-NLP/sparrow",
      "dataset_name": "sentiment-2016-mozetic-por",
      "test_split": "validation",
      "fewshot_split": "train",
      "doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:",
      "doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}",
      "description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 25,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Positivo",
                "Neutro",
                "Negativo"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "limit": 500,
      "metadata": {
        "version": 1.0
      }
    },
    "sparrow_sentiment-2018-brum-por": {
      "task": "sparrow_sentiment-2018-brum-por",
      "task_alias": "sentiment-2018-brum-por",
      "group": [
        "pt_benchmark",
        "sparrow"
      ],
      "dataset_path": "UBC-NLP/sparrow",
      "dataset_name": "sentiment-2018-brum-por",
      "test_split": "validation",
      "fewshot_split": "train",
      "doc_to_text": "Texto: {{content}}\nPergunta: O sentimento do texto é Positivo, Neutro ou Negativo?\nResposta:",
      "doc_to_target": "{{'Positivo' if label == 'Positive' else ('Negativo' if label == 'Negative' else 'Neutro')}}",
      "description": "Abaixo contém o conteúdo de tweets de usuarios do Twitter em português, sua tarefa é classificar se o sentimento do texto é Positivo, Neutro ou Negativo. Responda apenas com uma das opções.\n\n",
      "target_delimiter": " ",
      "fewshot_delimiter": "\n\n",
      "fewshot_config": {
        "sampler": "first_n"
      },
      "num_fewshot": 25,
      "metric_list": [
        {
          "metric": "f1_macro",
          "aggregation": "f1_macro",
          "higher_is_better": true
        },
        {
          "metric": "acc",
          "aggregation": "acc",
          "higher_is_better": true
        }
      ],
      "output_type": "generate_until",
      "generation_kwargs": {
        "max_gen_toks": 32,
        "do_sample": false,
        "temperature": 0.0,
        "top_k": null,
        "top_p": null,
        "until": [
          "\n\n"
        ]
      },
      "repeats": 1,
      "filter_list": [
        {
          "name": "all",
          "filter": [
            {
              "function": "find_similar_label",
              "labels": [
                "Positivo",
                "Neutro",
                "Negativo"
              ]
            },
            {
              "function": "take_first"
            }
          ]
        }
      ],
      "should_decontaminate": false,
      "limit": 500,
      "metadata": {
        "version": 1.0
      }
    }
  },
  "versions": {
    "assin2_rte": 1.0,
    "assin2_sts": 1.0,
    "bluex": 1.0,
    "enem_challenge": 1.0,
    "faquad_nli": 1.0,
    "oab_exams": 1.4,
    "sparrow_emotion-2021-cortiz-por": 1.0,
    "sparrow_hate-2019-fortuna-por": 1.0,
    "sparrow_sentiment-2016-mozetic-por": 1.0,
    "sparrow_sentiment-2018-brum-por": 1.0
  },
  "n-shot": {
    "assin2_rte": 15,
    "assin2_sts": 15,
    "bluex": 3,
    "enem_challenge": 3,
    "faquad_nli": 15,
    "oab_exams": 3,
    "sparrow_emotion-2021-cortiz-por": 25,
    "sparrow_hate-2019-fortuna-por": 25,
    "sparrow_sentiment-2016-mozetic-por": 25,
    "sparrow_sentiment-2018-brum-por": 25
  },
  "model_meta": {
    "truncated": 17,
    "non_truncated": 11872,
    "padded": 0,
    "non_padded": 11889,
    "fewshots_truncated": 18,
    "has_chat_template": false,
    "chat_type": null,
    "n_gpus": 1,
    "accelerate_num_process": null,
    "model_sha": "c4fc8d586d62df497f1f9b69d66d3ca419992d3e",
    "model_dtype": "torch.float16",
    "model_memory_footprint": 914477872,
    "model_num_parameters": 405334016,
    "model_is_loaded_in_4bit": false,
    "model_is_loaded_in_8bit": false,
    "model_is_quantized": null,
    "model_device": "cuda:0",
    "batch_size": 64,
    "max_length": 2048,
    "max_ctx_length": 2016,
    "max_gen_toks": 32
  },
  "task_model_meta": {
    "assin2_rte": {
      "sample_size": 2448,
      "truncated": 0,
      "non_truncated": 2448,
      "padded": 0,
      "non_padded": 2448,
      "fewshots_truncated": 0,
      "mean_seq_length": 1259.0061274509803,
      "min_seq_length": 1236,
      "max_seq_length": 1325,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 15.0,
      "mean_effective_fewshot_size": 15.0
    },
    "assin2_sts": {
      "sample_size": 2448,
      "truncated": 0,
      "non_truncated": 2448,
      "padded": 0,
      "non_padded": 2448,
      "fewshots_truncated": 0,
      "mean_seq_length": 1392.0061274509803,
      "min_seq_length": 1369,
      "max_seq_length": 1458,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 15.0,
      "mean_effective_fewshot_size": 15.0
    },
    "bluex": {
      "sample_size": 719,
      "truncated": 2,
      "non_truncated": 717,
      "padded": 0,
      "non_padded": 719,
      "fewshots_truncated": 2,
      "mean_seq_length": 1324.076495132128,
      "min_seq_length": 953,
      "max_seq_length": 2108,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 3.0,
      "mean_effective_fewshot_size": 2.9972183588317107
    },
    "enem_challenge": {
      "sample_size": 1429,
      "truncated": 15,
      "non_truncated": 1414,
      "padded": 0,
      "non_padded": 1429,
      "fewshots_truncated": 16,
      "mean_seq_length": 1542.0517844646606,
      "min_seq_length": 1291,
      "max_seq_length": 2503,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 3.0,
      "mean_effective_fewshot_size": 2.9888033589923024
    },
    "faquad_nli": {
      "sample_size": 650,
      "truncated": 0,
      "non_truncated": 650,
      "padded": 0,
      "non_padded": 650,
      "fewshots_truncated": 0,
      "mean_seq_length": 1540.8153846153846,
      "min_seq_length": 1487,
      "max_seq_length": 1650,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 15.0,
      "mean_effective_fewshot_size": 15.0
    },
    "oab_exams": {
      "sample_size": 2195,
      "truncated": 0,
      "non_truncated": 2195,
      "padded": 0,
      "non_padded": 2195,
      "fewshots_truncated": 0,
      "mean_seq_length": 1324.5503416856493,
      "min_seq_length": 1061,
      "max_seq_length": 1789,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 3.0,
      "mean_effective_fewshot_size": 3.0
    },
    "sparrow_emotion-2021-cortiz-por": {
      "sample_size": 500,
      "truncated": 0,
      "non_truncated": 500,
      "padded": 0,
      "non_padded": 500,
      "fewshots_truncated": 0,
      "mean_seq_length": 1744.524,
      "min_seq_length": 1723,
      "max_seq_length": 1777,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 25.0,
      "mean_effective_fewshot_size": 25.0
    },
    "sparrow_hate-2019-fortuna-por": {
      "sample_size": 500,
      "truncated": 0,
      "non_truncated": 500,
      "padded": 0,
      "non_padded": 500,
      "fewshots_truncated": 0,
      "mean_seq_length": 1716.684,
      "min_seq_length": 1693,
      "max_seq_length": 1754,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 25.0,
      "mean_effective_fewshot_size": 25.0
    },
    "sparrow_sentiment-2016-mozetic-por": {
      "sample_size": 500,
      "truncated": 0,
      "non_truncated": 500,
      "padded": 0,
      "non_padded": 500,
      "fewshots_truncated": 0,
      "mean_seq_length": 1425.294,
      "min_seq_length": 1408,
      "max_seq_length": 1461,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 25.0,
      "mean_effective_fewshot_size": 25.0
    },
    "sparrow_sentiment-2018-brum-por": {
      "sample_size": 500,
      "truncated": 0,
      "non_truncated": 500,
      "padded": 0,
      "non_padded": 500,
      "fewshots_truncated": 0,
      "mean_seq_length": 1577.602,
      "min_seq_length": 1560,
      "max_seq_length": 1607,
      "max_ctx_length": 2016,
      "max_gen_toks": 32,
      "mean_original_fewshots_size": 25.0,
      "mean_effective_fewshot_size": 25.0
    }
  },
  "config": {
    "model": "huggingface",
    "model_args": "pretrained=EleutherAI/pythia-410m-deduped,dtype=float16,device=cuda:0,revision=main,trust_remote_code=True,starting_max_length=4096",
    "batch_size": "auto",
    "batch_sizes": [],
    "device": null,
    "use_cache": null,
    "limit": [
      null,
      null,
      null,
      null,
      null,
      null,
      500.0,
      500.0,
      500.0,
      500.0
    ],
    "bootstrap_iters": 0,
    "gen_kwargs": null
  },
  "git_hash": "15f86b5"
}