Datasets:

Languages:
English
ArXiv:
Rricha commited on
Commit
c5bb763
1 Parent(s): 888f2c7

Update climate-evaluation.py

Browse files
Files changed (1) hide show
  1. climate-evaluation.py +70 -37
climate-evaluation.py CHANGED
@@ -24,6 +24,8 @@ Datasets for Climate Evaluation.
24
 
25
  _HOMEPAGE = "https://arxiv.org/abs/2401.09646"
26
 
 
 
27
  _LICENSE = ""
28
 
29
  _ClimateEvaluation_BASE_KWARGS = dict(
@@ -172,7 +174,7 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
172
  """\
173
  CDP-QA is a dataset compiled from the questionnaires of the Carbon Disclosure Project, where cities, corporations, and states disclose their environmental information. The dataset presents pairs of questions and answers, and the objective is to predict whether a given answer is valid for the corresponding question. We benchmarked ClimateGPT on the questionnaires from the Combined split. """
174
  ),
175
- data_dir="CDP",
176
  text_features={"question": "question", "answer": "answer"},
177
  label_classes=["0", "1"],
178
  label_column="label",
@@ -196,7 +198,7 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
196
  """\
197
  The Exeter Climate Claims dataset contains textual data from 33 influential climate contrarian blogs and the climate-change-related content from 20 conservative think tanks spanning the years 1998 to 2020. Annotation of the dataset was done manually using a thorough three-layer taxonomy of (climate-change related) contrarian claims, which was developed by the authors. We utilize this dataset specifically for the binary classification task of discerning whether a given text contains a contrarian claim pertaining to climate change or not.  """
198
  ),
199
- data_dir="exeter",
200
  text_features={"text": "text"},
201
  label_classes=["0", "1"],
202
  label_column="label",
@@ -335,39 +337,50 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
335
 
336
  def _split_generators(self, dl_manager):
337
  data_dir = self.config.data_dir
338
- print(f"self.config.data_dir: {self.config.data_dir}")
 
339
 
340
  if self.config.name == "exams" or self.config.name == "translated_exams":
 
 
 
 
341
  return [
342
  datasets.SplitGenerator(
343
  name=datasets.Split.TEST,
344
  gen_kwargs={
345
- "data_file": os.path.join(data_dir or "", "test.csv"),
346
  "split": "test",
347
  },
348
  ),
349
  ]
350
 
351
  if self.config.name == "exeter":
 
 
 
 
 
 
352
  return [
353
  datasets.SplitGenerator(
354
  name=datasets.Split.TRAIN,
355
  gen_kwargs={
356
- "data_file": os.path.join(data_dir or "", "training.csv"),
357
  "split": "train",
358
  },
359
  ),
360
  datasets.SplitGenerator(
361
  name=datasets.Split.VALIDATION,
362
  gen_kwargs={
363
- "data_file": os.path.join(data_dir or "", "validation.csv"),
364
  "split": "valid",
365
  },
366
  ),
367
  datasets.SplitGenerator(
368
  name=datasets.Split.TEST,
369
  gen_kwargs={
370
- "data_file": os.path.join(data_dir or "", "test.csv"),
371
  "split": "test",
372
  },
373
  ),
@@ -376,7 +389,7 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
376
  if self.config.name == "climatext":
377
  files = {
378
  "train": [
379
- # "train-data/AL-10Ks.tsv : 3000 (58 positives, 2942 negatives) (TSV, 127138 KB).tsv",
380
  "train-data/AL-Wiki (train).tsv",
381
  ],
382
  "valid": ["dev-data/Wikipedia (dev).tsv"],
@@ -386,95 +399,115 @@ class ClimateEvaluation(datasets.GeneratorBasedBuilder):
386
  "test-data/10-Ks (2018, test).tsv",
387
  ],
388
  }
 
 
 
 
 
 
389
  return [
390
  datasets.SplitGenerator(
391
  name=datasets.Split.TRAIN,
392
  gen_kwargs={
393
- "data_file": [
394
- os.path.join(data_dir or "", f) for f in files["train"]
395
- ],
 
396
  "split": "train",
397
  },
398
  ),
399
  datasets.SplitGenerator(
400
  name=datasets.Split.VALIDATION,
401
  gen_kwargs={
402
- "data_file": [
403
- os.path.join(data_dir or "", f) for f in files["valid"]
404
- ],
405
  "split": "valid",
406
  },
407
  ),
408
  datasets.SplitGenerator(
409
  name=datasets.Split.TEST,
410
  gen_kwargs={
411
- "data_file": [
412
- os.path.join(data_dir or "", f) for f in files["test"]
413
- ],
414
  "split": "test",
415
  },
416
  ),
417
  ]
418
 
419
  if self.config.name == "cdp_qa":
420
- categories = {
421
- "cities": "Cities/Cities Responses",
422
- "states": "States",
423
- "corporations": "Corporations/Corporations Responses/Climate Change",
424
- "combined": "Combined",
 
 
 
 
 
425
  }
 
 
426
  return [
427
  datasets.SplitGenerator(
428
  name=datasets.Split.TRAIN,
429
  gen_kwargs={
430
- "data_file": [
431
- (k, os.path.join(data_dir or "", v, "train_qa.csv"))
432
- for k, v in categories.items()
433
- ],
 
434
  "split": "train",
435
  },
436
  ),
437
  datasets.SplitGenerator(
438
  name=datasets.Split.VALIDATION,
439
  gen_kwargs={
440
- "data_file": [
441
- (k, os.path.join(data_dir or "", v, "val_qa.csv"))
442
- for k, v in categories.items()
443
- ],
 
444
  "split": "valid",
445
  },
446
  ),
447
  datasets.SplitGenerator(
448
  name=datasets.Split.TEST,
449
  gen_kwargs={
450
- "data_file": [
451
- (k, os.path.join(data_dir or "", v, "test_qa.csv"))
452
- for k, v in categories.items()
453
- ],
 
454
  "split": "test",
455
  },
456
  ),
457
  ]
 
 
 
 
 
 
 
458
 
459
  return [
460
  datasets.SplitGenerator(
461
  name=datasets.Split.TRAIN,
462
  gen_kwargs={
463
- "data_file": os.path.join(data_dir or "", "train.csv"),
464
  "split": "train",
465
  },
466
  ),
467
  datasets.SplitGenerator(
468
  name=datasets.Split.VALIDATION,
469
  gen_kwargs={
470
- "data_file": os.path.join(data_dir or "", "val.csv"),
471
  "split": "valid",
472
  },
473
  ),
474
  datasets.SplitGenerator(
475
  name=datasets.Split.TEST,
476
  gen_kwargs={
477
- "data_file": os.path.join(data_dir or "", "test.csv"),
478
  "split": "test",
479
  },
480
  ),
 
24
 
25
  _HOMEPAGE = "https://arxiv.org/abs/2401.09646"
26
 
27
+ _URL = "https://huggingface.co/datasets/eci-io/tree/main/"
28
+
29
  _LICENSE = ""
30
 
31
  _ClimateEvaluation_BASE_KWARGS = dict(
 
174
  """\
175
  CDP-QA is a dataset compiled from the questionnaires of the Carbon Disclosure Project, where cities, corporations, and states disclose their environmental information. The dataset presents pairs of questions and answers, and the objective is to predict whether a given answer is valid for the corresponding question. We benchmarked ClimateGPT on the questionnaires from the Combined split. """
176
  ),
177
+ data_dir="CDP/Combined/",
178
  text_features={"question": "question", "answer": "answer"},
179
  label_classes=["0", "1"],
180
  label_column="label",
 
198
  """\
199
  The Exeter Climate Claims dataset contains textual data from 33 influential climate contrarian blogs and the climate-change-related content from 20 conservative think tanks spanning the years 1998 to 2020. Annotation of the dataset was done manually using a thorough three-layer taxonomy of (climate-change related) contrarian claims, which was developed by the authors. We utilize this dataset specifically for the binary classification task of discerning whether a given text contains a contrarian claim pertaining to climate change or not.  """
200
  ),
201
+ data_dir="exeter/",
202
  text_features={"text": "text"},
203
  label_classes=["0", "1"],
204
  label_column="label",
 
337
 
338
  def _split_generators(self, dl_manager):
339
  data_dir = self.config.data_dir
340
+ # urls_to_download = _URL
341
+ # print(f"self.config.data_dir: {self.config.data_dir}")
342
 
343
  if self.config.name == "exams" or self.config.name == "translated_exams":
344
+ urls_to_download={
345
+ "test": _URL + os.path.join(data_dir or "", "test.csv")
346
+ }
347
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
348
  return [
349
  datasets.SplitGenerator(
350
  name=datasets.Split.TEST,
351
  gen_kwargs={
352
+ "data_file": downloaded_files["test"], #os.path.join(data_dir or "", "test.csv"),
353
  "split": "test",
354
  },
355
  ),
356
  ]
357
 
358
  if self.config.name == "exeter":
359
+ urls_to_download={
360
+ "train": _URL + data_dir + "training.csv",
361
+ "valid": _URL + data_dir + "validation.csv",
362
+ "test": _URL + data_dir + "test.csv"
363
+ }
364
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
365
  return [
366
  datasets.SplitGenerator(
367
  name=datasets.Split.TRAIN,
368
  gen_kwargs={
369
+ "data_file": downloaded_files["train"],
370
  "split": "train",
371
  },
372
  ),
373
  datasets.SplitGenerator(
374
  name=datasets.Split.VALIDATION,
375
  gen_kwargs={
376
+ "data_file": downloaded_files["valid"],
377
  "split": "valid",
378
  },
379
  ),
380
  datasets.SplitGenerator(
381
  name=datasets.Split.TEST,
382
  gen_kwargs={
383
+ "data_file": downloaded_files["test"],
384
  "split": "test",
385
  },
386
  ),
 
389
  if self.config.name == "climatext":
390
  files = {
391
  "train": [
392
+ "train-data/AL-10Ks.tsv : 3000 (58 positives, 2942 negatives) (TSV, 127138 KB).tsv",
393
  "train-data/AL-Wiki (train).tsv",
394
  ],
395
  "valid": ["dev-data/Wikipedia (dev).tsv"],
 
399
  "test-data/10-Ks (2018, test).tsv",
400
  ],
401
  }
402
+ urls_to_download={
403
+ "train": [_URL+os.path.join(data_dir or "", f) for f in files["train"]],
404
+ "valid": [_URL+os.path.join(data_dir or "", f) for f in files["valid"]],
405
+ "test": [_URL+os.path.join(data_dir or "", f) for f in files["test"]],
406
+ }
407
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
408
  return [
409
  datasets.SplitGenerator(
410
  name=datasets.Split.TRAIN,
411
  gen_kwargs={
412
+ "data_file": downloaded_files["train"],
413
+ # [
414
+ # os.path.join(data_dir or "", f) for f in files["train"]
415
+ # ],
416
  "split": "train",
417
  },
418
  ),
419
  datasets.SplitGenerator(
420
  name=datasets.Split.VALIDATION,
421
  gen_kwargs={
422
+ "data_file": downloaded_files["valid"],
 
 
423
  "split": "valid",
424
  },
425
  ),
426
  datasets.SplitGenerator(
427
  name=datasets.Split.TEST,
428
  gen_kwargs={
429
+ "data_file": downloaded_files["test"],
 
 
430
  "split": "test",
431
  },
432
  ),
433
  ]
434
 
435
  if self.config.name == "cdp_qa":
436
+ # categories = {
437
+ # "cities": "Cities/Cities Responses",
438
+ # "states": "States",
439
+ # "corporations": "Corporations/Corporations Responses/Climate Change",
440
+ # "combined": "Combined",
441
+ # }
442
+ urls_to_download={
443
+ "train": _URL + os.path.join(data_dir or "", "train_qa.csv"),
444
+ "valid": _URL + os.path.join(data_dir or "", "val_qa.csv"),
445
+ "test": _URL + os.path.join(data_dir or "", "test_qa.csv")
446
  }
447
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
448
+
449
  return [
450
  datasets.SplitGenerator(
451
  name=datasets.Split.TRAIN,
452
  gen_kwargs={
453
+ "data_file": downloaded_files["train"],
454
+ # "data_file": [
455
+ # (k, os.path.join(data_dir or "", v, "train_qa.csv"))
456
+ # for k, v in categories.items()
457
+ # ],
458
  "split": "train",
459
  },
460
  ),
461
  datasets.SplitGenerator(
462
  name=datasets.Split.VALIDATION,
463
  gen_kwargs={
464
+ "data_file": downloaded_files["valid"],
465
+ # [
466
+ # (k, os.path.join(data_dir or "", v, "val_qa.csv"))
467
+ # for k, v in categories.items()
468
+ # ],
469
  "split": "valid",
470
  },
471
  ),
472
  datasets.SplitGenerator(
473
  name=datasets.Split.TEST,
474
  gen_kwargs={
475
+ "data_file": downloaded_files["test"],
476
+ # [
477
+ # (k, os.path.join(data_dir or "", v, "test_qa.csv"))
478
+ # for k, v in categories.items()
479
+ # ],
480
  "split": "test",
481
  },
482
  ),
483
  ]
484
+
485
+ urls_to_download={
486
+ "train": _URL + os.path.join(data_dir or "", "train.csv"),
487
+ "valid": _URL + os.path.join(data_dir or "", "val.csv"),
488
+ "test": _URL + os.path.join(data_dir or "", "test.csv")
489
+ }
490
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
491
 
492
  return [
493
  datasets.SplitGenerator(
494
  name=datasets.Split.TRAIN,
495
  gen_kwargs={
496
+ "data_file": downloaded_files["train"],
497
  "split": "train",
498
  },
499
  ),
500
  datasets.SplitGenerator(
501
  name=datasets.Split.VALIDATION,
502
  gen_kwargs={
503
+ "data_file": downloaded_files["valid"],
504
  "split": "valid",
505
  },
506
  ),
507
  datasets.SplitGenerator(
508
  name=datasets.Split.TEST,
509
  gen_kwargs={
510
+ "data_file": downloaded_files["test"],
511
  "split": "test",
512
  },
513
  ),