File size: 30,768 Bytes
b9a3784 9365349 b9a3784 8d6beca b9a3784 f855cd8 c5bb763 b9a3784 1bcd926 0de32ae f855cd8 9365349 ed648f2 9365349 b9a3784 c615e95 b9a3784 4c4cd3b f855cd8 4c4cd3b b9a3784 888f2c7 b9a3784 888f2c7 b9a3784 888f2c7 b9a3784 9365349 b9a3784 cc824e1 b9a3784 5525641 b9a3784 cc824e1 b9a3784 8d6beca b9a3784 8d6beca b9a3784 888f2c7 b9a3784 8d6beca 5525641 8d6beca b9a3784 8d6beca 7ef3f12 c615e95 8d6beca 7ef3f12 8d6beca 4dec95d 8d6beca 9365349 8d6beca c5bb763 8d6beca 1bcd926 c5bb763 1bcd926 c5bb763 8d6beca c5bb763 8d6beca 90af898 f855cd8 90af898 f855cd8 c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 7ef3f12 8d6beca 1bcd926 90af898 f855cd8 90af898 f855cd8 1bcd926 c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 90af898 f855cd8 90af898 f855cd8 1bcd926 c5bb763 9365349 4dec95d c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 90af898 f855cd8 90af898 f855cd8 1bcd926 9365349 c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca c5bb763 8d6beca e1c48fc cfb1906 9365349 e1c48fc 8d6beca 4dec95d 8d6beca 9365349 8d6beca 9365349 8d6beca 9365349 8d6beca 9365349 8d6beca 7ef3f12 8d6beca 7ef3f12 8d6beca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
"""Climate Evaluation: Datasets used in the ClimateGPT paper"""
import os
import datasets
import csv
import textwrap
import json
from pathlib import Path
_CITATION = """
@misc{thulke2024climategpt,
title={ClimateGPT: Towards AI Synthesizing Interdisciplinary Research on Climate Change},
author={David Thulke and Yingbo Gao and Petrus Pelser and Rein Brune and Rricha Jalota and Floris Fok and Michael Ramos and Ian van Wyk and Abdallah Nasir and Hayden Goldstein and Taylor Tragemann and Katie Nguyen and Ariana Fowler and Andrew Stanco and Jon Gabriel and Jordan Taylor and Dean Moro and Evgenii Tsymbalov and Juliette de Waal and Evgeny Matusov and Mudar Yaghi and Mohammad Shihadah and Hermann Ney and Christian Dugast and Jonathan Dotan and Daniel Erasmus},
year={2024},
eprint={2401.09646},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
"""
_DESCRIPTION = """\
Datasets for Climate Evaluation.
"""
_HOMEPAGE = "https://arxiv.org/abs/2401.09646"
_URL = "https://huggingface.co/datasets/eci-io/climate-evaluation/resolve/main/"
_LICENSE = ""
# _BASE_HF_URL = "https://huggingface.co/datasets/eci-io/climate-evaluation/resolve/main" #Path("./")
# _BASE_HF_URL = Path("./")
# print(f"_BASE_HF_URL: {_BASE_HF_URL}")
_ClimateEvaluation_BASE_KWARGS = dict(
citation=_CITATION,
url=_HOMEPAGE,
)
# DEFAULT_CONFIG_NAME = "climate_stance"
class ClimateEvaluationConfig(datasets.BuilderConfig):
"""BuilderConfig for ClimateEvaluation."""
def __init__(
self,
data_dir,
citation,
url=None,
text_features=None,
label_column=None,
label_classes=None,
process_label=lambda x: x,
**kwargs,
):
"""BuilderConfig for ClimateGPT-Evaluation.
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column: `string`, name of the column in the tsv file corresponding
to the label
data_dir: `string`, the path to the folder containing the tsv files in the
downloaded zip
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
process_label: `Function[string, any]`, function taking in the raw value
of the label and processing it to the form required by the label feature
**kwargs: keyword arguments forwarded to super.
"""
super(ClimateEvaluationConfig, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
self.text_features = text_features
self.label_column = label_column
self.label_classes = label_classes
self.data_dir = data_dir
self.citation = citation
self.url = url
self.process_label = process_label
class ClimateEvaluation(datasets.GeneratorBasedBuilder):
"""On ClimaBench, Pira 2.0 MCQs, Exeter datasets"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIG_CLASS = ClimateEvaluationConfig
BUILDER_CONFIGS = [
ClimateEvaluationConfig(
name="climate_stance",
description=textwrap.dedent(
"""\
Climate-Stance contains climate change-related tweets that were posted during the 2019 United Nations Framework Convention on Climate Change. The tweets have been manually categorized into three groups for the purpose of stance detection: those expressing support for climate change prevention, those opposing it, and those with an ambiguous stance."""
),
text_features={"text": "text"},
label_classes=[0, 1, 2],
label_column="label",
data_dir="ClimateStance",
citation=textwrap.dedent(
"""\
@inproceedings{vaid-etal-2022-towards,
title = "Towards Fine-grained Classification of Climate Change related Social Media Text",
author = "Vaid, Roopal and
Pant, Kartikey and
Shrivastava, Manish",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-srw.35",
doi = "10.18653/v1/2022.acl-srw.35",
pages = "434--443",
abstract = "With climate change becoming a cause of concern worldwide, it becomes essential to gauge people{'}s reactions. This can help educate and spread awareness about it and help leaders improve decision-making. This work explores the fine-grained classification and Stance detection of climate change-related social media text. Firstly, we create two datasets, ClimateStance and ClimateEng, consisting of 3777 tweets each, posted during the 2019 United Nations Framework Convention on Climate Change and comprehensively outline the dataset collection, annotation methodology, and dataset composition. Secondly, we propose the task of Climate Change stance detection based on our proposed ClimateStance dataset. Thirdly, we propose a fine-grained classification based on the ClimateEng dataset, classifying social media text into five categories: Disaster, Ocean/Water, Agriculture/Forestry, Politics, and General. We benchmark both the datasets for climate change stance detection and fine-grained classification using state-of-the-art methods in text classification. We also create a Reddit-based dataset for both the tasks, ClimateReddit, consisting of 6262 pseudo-labeled comments along with 329 manually annotated comments for the label. We then perform semi-supervised experiments for both the tasks and benchmark their results using the best-performing model for the supervised experiments. Lastly, we provide insights into the ClimateStance and ClimateReddit using part-of-speech tagging and named-entity recognition.",
}
}"""
),
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
),
ClimateEvaluationConfig(
name="climate_eng",
description=textwrap.dedent(
"""\
ClimateEng contains climate change-related tweets that were posted during the 2019 United Nations Framework Convention on Climate Change. The tweets have been manually categorized for the task of fine-grained classification into topics such as: Disaster, Ocean/Water, Agriculture/forestry, Politics, General. """
),
text_features={"text": "text"},
label_classes=["0", "1", "2", "3", "4"],
label_column="label",
data_dir="ClimateEng",
citation=textwrap.dedent(
"""\
@inproceedings{vaid-etal-2022-towards,
title = "Towards Fine-grained Classification of Climate Change related Social Media Text",
author = "Vaid, Roopal and
Pant, Kartikey and
Shrivastava, Manish",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-srw.35",
doi = "10.18653/v1/2022.acl-srw.35",
pages = "434--443",
abstract = "With climate change becoming a cause of concern worldwide, it becomes essential to gauge people{'}s reactions. This can help educate and spread awareness about it and help leaders improve decision-making. This work explores the fine-grained classification and Stance detection of climate change-related social media text. Firstly, we create two datasets, ClimateStance and ClimateEng, consisting of 3777 tweets each, posted during the 2019 United Nations Framework Convention on Climate Change and comprehensively outline the dataset collection, annotation methodology, and dataset composition. Secondly, we propose the task of Climate Change stance detection based on our proposed ClimateStance dataset. Thirdly, we propose a fine-grained classification based on the ClimateEng dataset, classifying social media text into five categories: Disaster, Ocean/Water, Agriculture/Forestry, Politics, and General. We benchmark both the datasets for climate change stance detection and fine-grained classification using state-of-the-art methods in text classification. We also create a Reddit-based dataset for both the tasks, ClimateReddit, consisting of 6262 pseudo-labeled comments along with 329 manually annotated comments for the label. We then perform semi-supervised experiments for both the tasks and benchmark their results using the best-performing model for the supervised experiments. Lastly, we provide insights into the ClimateStance and ClimateReddit using part-of-speech tagging and named-entity recognition.",
}
}"""
),
url="https://github.com/roopalv54/finegrained-climate-change-social-media",
),
ClimateEvaluationConfig(
name="climatext",
description=textwrap.dedent(
"""\
ClimaText is a binary classification dataset containing sentences from the web, Wikipedia and the section of US public companies' 10-K reports that addresses climate-related risks. The dataset is employed for the task of predicting whether a given sentence is relevant to climate change or not. """
),
text_features={"text": "sentence"},
label_classes=["0", "1"],
label_column="label",
data_dir="ClimaText",
citation=textwrap.dedent(
"""\
@misc{varini2021climatext,
title={ClimaText: A Dataset for Climate Change Topic Detection},
author={Francesco S. Varini and Jordan Boyd-Graber and Massimiliano Ciaramita and Markus Leippold},
year={2021},
eprint={2012.00483},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
}"""
),
url="https://www.sustainablefinance.uzh.ch/en/research/climate-fever/climatext.html",
),
ClimateEvaluationConfig(
name="cdp_qa",
description=textwrap.dedent(
"""\
CDP-QA is a dataset compiled from the questionnaires of the Carbon Disclosure Project, where cities, corporations, and states disclose their environmental information. The dataset presents pairs of questions and answers, and the objective is to predict whether a given answer is valid for the corresponding question. We benchmarked ClimateGPT on the questionnaires from the Combined split. """
),
data_dir="CDP/Combined",
text_features={"question": "question", "answer": "answer"},
label_classes=["0", "1"],
label_column="label",
url="https://arxiv.org/abs/2301.04253",
citation=textwrap.dedent(
"""\
@misc{laud2023Climabench,
title={ClimaBench: A Benchmark Dataset For Climate Change Text Understanding in English},
author={Tanmay Laud and Daniel Spokoyny and Tom Corringham and Taylor Berg-Kirkpatrick},
year={2023},
eprint={2301.04253},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
}"""
),
),
ClimateEvaluationConfig(
name="exeter",
description=textwrap.dedent(
"""\
The Exeter Climate Claims dataset contains textual data from 33 influential climate contrarian blogs and the climate-change-related content from 20 conservative think tanks spanning the years 1998 to 2020. Annotation of the dataset was done manually using a thorough three-layer taxonomy of (climate-change related) contrarian claims, which was developed by the authors. We utilize this dataset specifically for the binary classification task of discerning whether a given text contains a contrarian claim pertaining to climate change or not. """
),
data_dir="exeter",
text_features={"text": "text"},
label_classes=["0", "1"],
label_column="label",
url="https://www.nature.com/articles/s41598-021-01714-4",
citation=textwrap.dedent(
"""\
@article{coan2021computer,
title={Computer-assisted classification of contrarian claims about climate change},
author={Coan, Travis G and Boussalis, Constantine and Cook, John and Nanko, Mirjam O},
journal={Scientific reports},
volume={11},
number={1},
pages={22320},
year={2021},
publisher={Nature Publishing Group UK London}
}
}"""
),
),
ClimateEvaluationConfig(
name="translated_exams",
description=textwrap.dedent(
"""\
EXAMS is a multiple choice question answering collected from high school examinations. To evaluate ClimateGPT on the cascaded machine translation approach, we evaluate on the English translation of the Arabic subset of this dataset. The Arabic subset covers questions from biology, physics, science, social science and Islamic studies.
"""
),
data_dir="exams/translated",
text_features={"subject": "subject", "question_stem": "question_stem", "choices": "choices"},
label_classes=["A", "B", "C", "D"],
label_column="answerKey",
url="https://arxiv.org/abs/2301.04253",
citation=textwrap.dedent(
"""\
@inproceedings{hardalov-etal-2020-exams,
title = "{EXAMS}: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering",
author = "Hardalov, Momchil and
Mihaylov, Todor and
Zlatkova, Dimitrina and
Dinkov, Yoan and
Koychev, Ivan and
Nakov, Preslav",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.438",
doi = "10.18653/v1/2020.emnlp-main.438",
pages = "5427--5444",
}
}"""
),
),
ClimateEvaluationConfig(
name="exams",
description=textwrap.dedent(
"""\
EXAMS is a multiple choice question answering collected from high school examinations. To evaluate ClimateGPT on the cascaded machine translation approach, we evaluate on the Arabic subset of this dataset. The Arabic subset covers questions from biology, physics, science, social science and Islamic studies. Note, this dataset is in arabic.
"""
),
data_dir="exams",
text_features={"subject": "subject", "question_stem": "question_stem", "choices": "choices"},
label_classes=["A", "B", "C", "D"],
label_column="answerKey",
url="https://arxiv.org/abs/2301.04253",
citation=textwrap.dedent(
"""\
@inproceedings{hardalov-etal-2020-exams,
title = "{EXAMS}: A Multi-subject High School Examinations Dataset for Cross-lingual and Multilingual Question Answering",
author = "Hardalov, Momchil and
Mihaylov, Todor and
Zlatkova, Dimitrina and
Dinkov, Yoan and
Koychev, Ivan and
Nakov, Preslav",
editor = "Webber, Bonnie and
Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-main.438",
doi = "10.18653/v1/2020.emnlp-main.438",
pages = "5427--5444",
}
}"""
),
),
]
def _info(self):
if self.config.name == "exams" or self.config.name == "translated_exams":
features = datasets.Features(
{
"subject": datasets.Value("string"),
"question_stem": datasets.Value("string"),
"choices": datasets.Value("string"),
"answerKey": datasets.ClassLabel(
names=["A", "B", "C", "D"]
),
}
)
features["idx"] = datasets.Value("int32")
else:
if self.config.name == "cdp_qa":
#print(f"self.config.text_features: {self.config.text_features.keys()}")
features = {
text_feature: datasets.Value("string")
for text_feature in self.config.text_features.keys()
}
# features["category"] = datasets.Value("string")
else:
features = {
text_feature: datasets.Value("string")
for text_feature in self.config.text_features.keys()
}
if self.config.label_classes:
features["label"] = datasets.features.ClassLabel(
names=self.config.label_classes
)
else:
features["label"] = datasets.Value("float32")
features["idx"] = datasets.Value("int32")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + _CITATION,
)
def _split_generators(self, dl_manager):
data_dir = self.config.data_dir
# urls_to_download = _URL
# print(f"self.config.data_dir: {self.config.data_dir}")
if self.config.name == "exams" or self.config.name == "translated_exams":
# urls_to_download={
# "test": _BASE_HF_URL / data_dir / f"test.csv"
# }
urls_to_download={
"test": _URL + os.path.join(data_dir or "", "test.csv"),
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": downloaded_files["test"], #os.path.join(data_dir or "", "test.csv"),
"split": "test",
},
),
]
if self.config.name == "exeter":
# urls_to_download={
# "train": _BASE_HF_URL / data_dir / f"training.csv",
# "valid": _BASE_HF_URL / data_dir / f"validation.csv",
# "test": _BASE_HF_URL / data_dir / f"test.csv"
# }
urls_to_download={
"train": _URL + os.path.join(data_dir or "", "training.csv"),
"valid": _URL + os.path.join(data_dir or "", "validation.csv"),
"test": _URL + os.path.join(data_dir or "", "test.csv"),
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": downloaded_files["valid"],
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": downloaded_files["test"],
"split": "test",
},
),
]
if self.config.name == "climatext":
files = {
"train": [
"train-data/AL-10Ks.tsv : 3000 (58 positives, 2942 negatives) (TSV, 127138 KB).tsv",
"train-data/AL-Wiki (train).tsv",
],
"valid": ["dev-data/Wikipedia (dev).tsv"],
"test": [
"test-data/Claims (test).tsv",
"test-data/Wikipedia (test).tsv",
"test-data/10-Ks (2018, test).tsv",
],
}
# os.path.join(data_dir or "", f)
# urls_to_download={
# "train": [_BASE_HF_URL / data_dir / f for f in files["train"]],
# "valid": [_BASE_HF_URL / data_dir / f for f in files["valid"]],
# "test": [_BASE_HF_URL / data_dir / f for f in files["test"]],
# }
urls_to_download={
"train": [_URL + os.path.join(data_dir or "", f) for f in files["train"]],
"valid": [_URL + os.path.join(data_dir or "", f) for f in files["valid"]],
"test": [_URL + os.path.join(data_dir or "", f) for f in files["test"]],
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": downloaded_files["train"],
# [
# os.path.join(data_dir or "", f) for f in files["train"]
# ],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": downloaded_files["valid"],
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": downloaded_files["test"],
"split": "test",
},
),
]
if self.config.name == "cdp_qa":
# categories = {
# "cities": "Cities/Cities Responses",
# "states": "States",
# "corporations": "Corporations/Corporations Responses/Climate Change",
# "combined": "Combined",
# }
# urls_to_download={
# "train": _BASE_HF_URL / data_dir / f"train_qa.csv",
# "valid": _BASE_HF_URL / data_dir / f"val_qa.csv",
# "test": _BASE_HF_URL / data_dir / f"test_qa.csv"
# }
urls_to_download={
"train": _URL + os.path.join(data_dir or "", "train_qa.csv"),
"valid": _URL + os.path.join(data_dir or "", "val_qa.csv"),
"test": _URL + os.path.join(data_dir or "", "test_qa.csv"),
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
#print(f"downloaded_files: {downloaded_files['train']}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": downloaded_files["train"],
# "data_file": [
# (k, os.path.join(data_dir or "", v, "train_qa.csv"))
# for k, v in categories.items()
# ],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": downloaded_files["valid"],
# [
# (k, os.path.join(data_dir or "", v, "val_qa.csv"))
# for k, v in categories.items()
# ],
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": downloaded_files["test"],
# [
# (k, os.path.join(data_dir or "", v, "test_qa.csv"))
# for k, v in categories.items()
# ],
"split": "test",
},
),
]
# urls_to_download={
# "train": _BASE_HF_URL / data_dir / f"train.csv", #os.path.join(data_dir or "", "train.csv"),
# "valid": _BASE_HF_URL / data_dir / f"val.csv", #+ os.path.join(data_dir or "", "val.csv"),
# "test": _BASE_HF_URL / data_dir / f"test.csv", #+ os.path.join(data_dir or "", "test.csv")
# }
urls_to_download={
"train": _URL + os.path.join(data_dir or "", "train.csv"),
"valid": _URL + os.path.join(data_dir or "", "val.csv"),
"test": _URL + os.path.join(data_dir or "", "test.csv")
}
# print(f"urls_to_download['train']: {urls_to_download['train']}")
# print(f"urls_to_download['valid']: {urls_to_download['valid']}")
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_file": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"data_file": downloaded_files["valid"],
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_file": downloaded_files["test"],
"split": "test",
},
),
]
def _generate_examples(self, data_file, split):
if self.config.name == "climatext":
idx = iter(range(100000))
for file in data_file:
yield from self._process_file(file, delimiter="\t", idx=idx)
# elif self.config.name == "cdp_qa":
# idx = iter(range(10000000))
# print(f"!!!data_file: {data_file}")
# for file in data_file:
# yield from self._process_file(data_file)
else:
yield from self._process_file(data_file)
def _process_file(self, data_file, delimiter=",", idx=None, category=None):
# print(f"data_file: {data_file}")
with open(data_file, encoding="utf8") as f:
process_label = self.config.process_label
label_classes = self.config.label_classes
# print(f"self.config.text_features: {self.config.text_features}")
# data = f.read()
# print(f"data: {data}")
reader = csv.DictReader(f, delimiter=delimiter, quoting=csv.QUOTE_ALL)
# print(f"reader: {reader}")
for n, row in enumerate(reader):
# print(f"row: {row}")
example = {
feat: row[col] for feat, col in self.config.text_features.items()
}
if idx:
example["idx"] = next(idx)
else:
example["idx"] = n
# if category:
# example["category"] = category
if self.config.label_column in row:
# print(f"self.config.label_column: {self.config.label_column}")
label = row[self.config.label_column]
if self.config.name in ["exams", "translated_exams"]:
example["answerKey"] = process_label(label)
else:
if label_classes and label not in label_classes:
label = int(label) if label else None
example["label"] = process_label(label)
else:
example["label"] = process_label(-1)
# Filter out corrupted rows.
for value in example.values():
if value is None:
break
else:
yield example["idx"], example |