File size: 3,769 Bytes
03d3e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2084151
a37e2f0
2084151
 
 
 
 
 
 
 
 
 
 
03d3e88
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': activate_my_card
          '1': age_limit
          '2': apple_pay_or_google_pay
          '3': atm_support
          '4': automatic_top_up
          '5': balance_not_updated_after_bank_transfer
          '6': balance_not_updated_after_cheque_or_cash_deposit
          '7': beneficiary_not_allowed
          '8': cancel_transfer
          '9': card_about_to_expire
          '10': card_acceptance
          '11': card_arrival
          '12': card_delivery_estimate
          '13': card_linking
          '14': card_not_working
          '15': card_payment_fee_charged
          '16': card_payment_not_recognised
          '17': card_payment_wrong_exchange_rate
          '18': card_swallowed
          '19': cash_withdrawal_charge
          '20': cash_withdrawal_not_recognised
          '21': change_pin
          '22': compromised_card
          '23': contactless_not_working
          '24': country_support
          '25': declined_card_payment
          '26': declined_cash_withdrawal
          '27': declined_transfer
          '28': direct_debit_payment_not_recognised
          '29': disposable_card_limits
          '30': edit_personal_details
          '31': exchange_charge
          '32': exchange_rate
          '33': exchange_via_app
          '34': extra_charge_on_statement
          '35': failed_transfer
          '36': fiat_currency_support
          '37': get_disposable_virtual_card
          '38': get_physical_card
          '39': getting_spare_card
          '40': getting_virtual_card
          '41': lost_or_stolen_card
          '42': lost_or_stolen_phone
          '43': order_physical_card
          '44': passcode_forgotten
          '45': pending_card_payment
          '46': pending_cash_withdrawal
          '47': pending_top_up
          '48': pending_transfer
          '49': pin_blocked
          '50': receiving_money
          '51': Refund_not_showing_up
          '52': request_refund
          '53': reverted_card_payment?
          '54': supported_cards_and_currencies
          '55': terminate_account
          '56': top_up_by_bank_transfer_charge
          '57': top_up_by_card_charge
          '58': top_up_by_cash_or_cheque
          '59': top_up_failed
          '60': top_up_limits
          '61': top_up_reverted
          '62': topping_up_by_card
          '63': transaction_charged_twice
          '64': transfer_fee_charged
          '65': transfer_into_account
          '66': transfer_not_received_by_recipient
          '67': transfer_timing
          '68': unable_to_verify_identity
          '69': verify_my_identity
          '70': verify_source_of_funds
          '71': verify_top_up
          '72': virtual_card_not_working
          '73': visa_or_mastercard
          '74': why_verify_identity
          '75': wrong_amount_of_cash_received
          '76': wrong_exchange_rate_for_cash_withdrawal
  - name: vector
    sequence: float32
  splits:
  - name: test
    num_bytes: 4947210
    num_examples: 3080
  download_size: 6749950
  dataset_size: 4947210
---
# Dataset Card for "banking77_vectors"


Install `pip install fast-sentence-transformers`
```python
from fast_sentence_transformers import FastSentenceTransformer as SentenceTransformer
from datasets import load_dataset

# use any sentence-transformer
encoder = SentenceTransformer("all-MiniLM-L6-v2", device="cpu")
dataset = load_dataset("banking77", split="test")
dataset = dataset.map(lambda batch: {"vector": encoder.encode(batch["text"])}, batch_size=32, batched=True)
```


[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)