import glob import json import os from tqdm import tqdm import datasets import yaml from PIL import Image as PilImage from transformers import AutoTokenizer import os import shutil PilImage.MAX_IMAGE_PIXELS = 11178956970 import tarfile with open("./config.yaml", "r") as file: config = yaml.safe_load(file) def generate_new_path(old_path, prefix="COCO_train2014_"): directory, old_filename = os.path.split(old_path) new_filename = f"{prefix}{old_filename}" return os.path.join(directory, new_filename) def read_image(image, image_dir): # image = image.replace("vqav2/", "") image_path = os.path.join(image_dir, image) return PilImage.open(generate_new_path(image_path)) _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={huggingface, Inc.}, year={2020} } """ VERSION = "1.0.0" _HOMEPAGE = "" _LICENSE = "" _URLS = { "image": config["image_path"], "json_files": "./metadata/speech_vqav2", } class PDFText(datasets.GeneratorBasedBuilder): """PDF text Dataset.""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="speech_vqav2", version=VERSION, description="speech_vqav2", ), ] def _info(self): description = "This new dataset is designed to solve education problems." features = datasets.Features( { "id": datasets.Value("int64"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "dataset": datasets.Value("string"), "task": datasets.Value("string"), "image": [datasets.Image()], } ) return datasets.DatasetInfo( description=description, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): image_data_dir = _URLS["image"] json_files_data_dir = _URLS["json_files"] split_files = [ os.path.join(json_files_data_dir, f) for f in os.listdir(json_files_data_dir) if f.endswith('.json') ] split_files.sort() split_index = int(len(split_files) * 0.98) train_data = split_files[:split_index] val_data = split_files[split_index:] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_data, "image_dir": image_data_dir }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": val_data, "image_dir": image_data_dir }, ), ] def _generate_examples(self, filepath, image_dir): """Yields examples from all JSON files with globally unique IDs.""" global_id = 0 # Keep track of global ID across all files for json_file in filepath: # try: file_name = os.path.basename(json_file) print(file_name) with open(json_file, 'r') as file: data = json.load(file) # data = data[:10] # Limiting to 10 examples as in original for item in tqdm(data, desc=f"Processing {os.path.basename(json_file)}"): # try: # Try to read the image image = [read_image(item["image"], image_dir)] # if image # Only yield if image loading succeeds yield global_id, { "id": global_id, "image": image, "task": item["task"], "dataset": "vqav2", "question": item["question"], "answer": item["answer"], } global_id += 1 # Increment only on successful yield