File size: 4,454 Bytes
12d535c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from dora import DoraStatus
import pylcs
import textwrap
import pandas as pd
import os
import pyarrow as pa
import numpy as np
from ctransformers import AutoModelForCausalLM

MIN_NUMBER_LINES = 4
MAX_NUMBER_LINES = 21


def search_most_simlar_line(text, searched_line):
    lines = text.split("\n")
    values = []

    for line in lines[MIN_NUMBER_LINES:MAX_NUMBER_LINES]:
        values.append(pylcs.edit_distance(line, searched_line))
    output = lines[np.array(values).argmin() + MIN_NUMBER_LINES]
    return output


def strip_indentation(code_block):
    # Use textwrap.dedent to strip common leading whitespace
    dedented_code = textwrap.dedent(code_block)

    return dedented_code


def replace_code_with_indentation(original_code, replacement_code):
    # Split the original code into lines
    lines = original_code.splitlines()
    if len(lines) != 0:
        # Preserve the indentation of the first line
        indentation = lines[0][: len(lines[0]) - len(lines[0].lstrip())]

        # Create a new list of lines with the replacement code and preserved indentation
        new_code_lines = indentation + replacement_code
    else:
        new_code_lines = replacement_code
    return new_code_lines


def replace_source_code(source_code, gen_replacement):
    initial = search_most_simlar_line(source_code, gen_replacement)
    print("Initial source code: %s" % initial)
    replacement = strip_indentation(
        gen_replacement.replace("```python\n", "")
        .replace("\n```", "")
        .replace("\n", "")
    )
    intermediate_result = replace_code_with_indentation(initial, replacement)
    print("Intermediate result: %s" % intermediate_result)
    end_result = source_code.replace(initial, intermediate_result)
    return end_result


def save_as(content, path):
    # use at the end of replace_2 as save_as(end_result, "file_path")
    with open(path, "w") as file:
        file.write(content)


class Operator:
    def __init__(self):
        # Load tokenizer
        self.llm = AutoModelForCausalLM.from_pretrained(
            "TheBloke/OpenHermes-2.5-Mistral-7B-GGUF",
            model_file="openhermes-2.5-mistral-7b.Q4_K_M.gguf",
            model_type="mistral",
            gpu_layers=50,
        )

    def on_event(
        self,
        dora_event,
        send_output,
    ) -> DoraStatus:
        if dora_event["type"] == "INPUT":
            input = dora_event["value"][0].as_py()

            with open(input["path"], "r", encoding="utf8") as f:
                raw = f.read()
            prompt = f"{raw[:400]} \n\n {input['query']}.  "
            print("revieved prompt: {}".format(prompt))
            output = self.ask_mistral(
                "You're a python code expert. Respond with only one line of code that modify a constant variable. Keep the uppercase.",
                prompt,
            )
            print("output: {}".format(output))
            source_code = replace_source_code(raw, output)
            send_output(
                "output_file",
                pa.array(
                    [{"raw": source_code, "path": input["path"], "gen_output": output}]
                ),
                dora_event["metadata"],
            )
        return DoraStatus.CONTINUE

    def ask_mistral(self, system_message, prompt):
        prompt_template = f"""<|im_start|>system
        {system_message}<|im_end|>
        <|im_start|>user
        {prompt}<|im_end|>
        <|im_start|>assistant
        """

        # Generate output
        outputs = self.llm(
            prompt_template,
        )
        # Get the tokens from the output, decode them, print them

        # Get text between im_start and im_end
        return outputs.split("<|im_end|>")[0]


if __name__ == "__main__":
    op = Operator()

    # Path to the current file
    current_file_path = __file__

    # Directory of the current file
    current_directory = os.path.dirname(current_file_path)

    path = current_directory + "/planning_op.py"
    with open(path, "r", encoding="utf8") as f:
        raw = f.read()

    op.on_event(
        {
            "type": "INPUT",
            "id": "tick",
            "value": pa.array(
                [
                    {
                        "raw": raw,
                        "path": path,
                        "query": "Set rotation to 20",
                    }
                ]
            ),
            "metadata": [],
        },
        print,
    )