import pyarrow as pa import whisper from pynput import keyboard from pynput.keyboard import Key, Events from dora import Node import torch import numpy as np import pyarrow as pa import sounddevice as sd import gc # garbage collect library model = whisper.load_model("base") SAMPLE_RATE = 16000 MAX_DURATION = 30 policy_init = True audio_data = None node = Node() for dora_event in node: if dora_event["type"] == "INPUT": ## Check for keyboard event with keyboard.Events() as events: event = events.get(1.0) if ( event is not None and (event.key == Key.alt_r or event.key == Key.ctrl_r) and isinstance(event, Events.Press) ): ## Microphone audio_data = sd.rec( int(SAMPLE_RATE * MAX_DURATION), samplerate=SAMPLE_RATE, channels=1, dtype=np.int16, blocking=False, ) elif ( event is not None and event.key == Key.alt_r and isinstance(event, Events.Release) ): sd.stop() if audio_data is None: continue audio = audio_data.ravel().astype(np.float32) / 32768.0 ## Speech to text audio = whisper.pad_or_trim(audio) result = model.transcribe(audio, language="en") node.send_output( "text_llm", pa.array([result["text"]]), dora_event["metadata"] ) # send_output("led", pa.array([0, 0, 255])) gc.collect() torch.cuda.empty_cache() elif ( event is not None and event.key == Key.ctrl_r and isinstance(event, Events.Release) ): sd.stop() if audio_data is None: continue audio = audio_data.ravel().astype(np.float32) / 32768.0 ## Speech to text audio = whisper.pad_or_trim(audio) result = model.transcribe(audio, language="en") node.send_output( "text_policy", pa.array([result["text"]]), dora_event["metadata"] ) # send_output("led", pa.array([0, 0, 255])) gc.collect() torch.cuda.empty_cache()