import torch from transformers import AutoProcessor, AutoModelForVision2Seq, AwqConfig import numpy as np import pyttsx3 START_TO_COUCH = np.array([[0.5, 0], [0.5, 0.5]]).ravel() COUCH_TO_KITCHEN = np.array([[0.5, -0.5], [1.0, -1.0]]).ravel() KITCHEN_TO_START = np.array([[0.5, -0.5], [0, 0]]).ravel() engine = pyttsx3.init("espeak") voices = engine.getProperty("voices") engine.setProperty("voice", voices[3].id) def speak(text): print(f"said {text}", flush=True) engine.say(text) engine.runAndWait() MODE = "quantized" DEVICE = "cuda" PROCESSOR = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-tfrm-compatible") BAD_WORDS_IDS = PROCESSOR.tokenizer( ["", ""], add_special_tokens=False ).input_ids EOS_WORDS_IDS = PROCESSOR.tokenizer( "", add_special_tokens=False ).input_ids + [PROCESSOR.tokenizer.eos_token_id] # Load model if MODE == "regular": model = AutoModelForVision2Seq.from_pretrained( "HuggingFaceM4/idefics2-tfrm-compatible", torch_dtype=torch.float16, trust_remote_code=True, _attn_implementation="flash_attention_2", revision="3dc93be345d64fb6b1c550a233fe87ddb36f183d", ).to(DEVICE) elif MODE == "quantized": quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ" model = AutoModelForVision2Seq.from_pretrained( quant_path, trust_remote_code=True ).to(DEVICE) elif MODE == "fused_quantized": quant_path = "HuggingFaceM4/idefics2-tfrm-compatible-AWQ" quantization_config = AwqConfig( bits=4, fuse_max_seq_len=4096, modules_to_fuse={ "attention": ["q_proj", "k_proj", "v_proj", "o_proj"], "mlp": ["gate_proj", "up_proj", "down_proj"], "layernorm": ["input_layernorm", "post_attention_layernorm", "norm"], "use_alibi": False, "num_attention_heads": 32, "num_key_value_heads": 8, "hidden_size": 4096, }, ) model = AutoModelForVision2Seq.from_pretrained( quant_path, quantization_config=quantization_config, trust_remote_code=True ).to(DEVICE) else: raise ValueError("Unknown mode") def ask_vlm(image, instruction): prompts = [ "User:", image, f"{instruction}.\n", "Assistant:", ] inputs = PROCESSOR(prompts) inputs = {k: torch.tensor(v).to(DEVICE) for k, v in inputs.items()} generated_ids = model.generate( **inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=10 ) generated_texts = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True) return generated_texts[0].split("\nAssistant: ")[1]