#!python3 import argparse import time # import sys # sys.path.append('/root/miniforge3/envs/DB/lib/python3.8/site-packages') import torch import yaml from trainer import Trainer # tagged yaml objects from experiment import Structure, TrainSettings, ValidationSettings, Experiment from concern.log import Logger from data.data_loader import DataLoader from data.image_dataset import ImageDataset from training.checkpoint import Checkpoint from training.model_saver import ModelSaver from training.optimizer_scheduler import OptimizerScheduler from concern.config import Configurable, Config def main(): import sys # sys.argv.append( 'experiments/seg_detector/td500_resnet18_deform_thre.yaml' ) sys.argv.append( 'experiments/seg_detector/ic15_resnet18_deform_thre.yaml' ) sys.argv.append( '--num_gpus' ) sys.argv.append( '1' ) sys.argv.append( '--batch_size' ) sys.argv.append( '6' ) sys.argv.append( '--epochs' ) sys.argv.append( '1200' ) #sys.argv.append( '--resume' ) # 继续上一次训练 #sys.argv.append( '/root/model_epoch_120_minibatch_12000' ) #sys.argv.append( '--start_iter' ) #sys.argv.append( '18000' ) #sys.argv.append( '--start_epoch' ) #sys.argv.append( '107' ) torch.backends.cudnn.enabled = False parser = argparse.ArgumentParser(description='Text Recognition Training') parser.add_argument('exp', type=str) parser.add_argument('--name', type=str) parser.add_argument('--batch_size', type=int, help='Batch size for training') parser.add_argument('--resume', type=str, help='Resume from checkpoint') parser.add_argument('--epochs', type=int, help='Number of training epochs') parser.add_argument('--num_workers', type=int, help='Number of dataloader workers') parser.add_argument('--start_iter', type=int, help='Begin counting iterations starting from this value (should be used with resume)') parser.add_argument('--start_epoch', type=int, help='Begin counting epoch starting from this value (should be used with resume)') parser.add_argument('--max_size', type=int, help='max length of label') parser.add_argument('--lr', type=float, help='initial learning rate') parser.add_argument('--optimizer', type=str, help='The optimizer want to use') parser.add_argument('--thresh', type=float, help='The threshold to replace it in the representers') parser.add_argument('--verbose', action='store_true', help='show verbose info') parser.add_argument('--visualize', action='store_true', help='visualize maps in tensorboard') parser.add_argument('--force_reload', action='store_true', dest='force_reload', help='Force reload data meta') parser.add_argument('--no-force_reload', action='store_false', dest='force_reload', help='Force reload data meta') parser.add_argument('--validate', action='store_true', dest='validate', help='Validate during training') parser.add_argument('--no-validate', action='store_false', dest='validate', help='Validate during training') parser.add_argument('--print-config-only', action='store_true', help='print config without actual training') parser.add_argument('--debug', action='store_true', dest='debug', help='Run with debug mode, which hacks dataset num_samples to toy number') parser.add_argument('--no-debug', action='store_false', dest='debug', help='Run without debug mode') parser.add_argument('--benchmark', action='store_true', dest='benchmark', help='Open cudnn benchmark mode') parser.add_argument('--no-benchmark', action='store_false', dest='benchmark', help='Turn cudnn benchmark mode off') parser.add_argument('-d', '--distributed', action='store_true', dest='distributed', help='Use distributed training') parser.add_argument('--local_rank', dest='local_rank', default=0, type=int, help='Use distributed training') parser.add_argument('-g', '--num_gpus', dest='num_gpus', default=4, type=int, help='The number of accessible gpus') parser.set_defaults(debug=False) parser.set_defaults(benchmark=True) args = parser.parse_args() args = vars(args) args = {k: v for k, v in args.items() if v is not None} if args['distributed']: torch.cuda.set_device(args['local_rank']) torch.distributed.init_process_group(backend='nccl', init_method='env://') conf = Config() experiment_args = conf.compile(conf.load(args['exp']))['Experiment'] experiment_args.update(cmd=args) experiment = Configurable.construct_class_from_config(experiment_args) if not args['print_config_only']: torch.backends.cudnn.benchmark = args['benchmark'] trainer = Trainer(experiment) trainer.train() if __name__ == '__main__': main()