--- dataset_info: features: - name: context dtype: string - name: question dtype: string - name: id dtype: string - name: lang dtype: string - name: answer dtype: string - name: answer_len dtype: int64 splits: - name: train num_bytes: 513179 num_examples: 417 download_size: 346284 dataset_size: 513179 configs: - config_name: default data_files: - split: train path: data/train-* --- # mlqa filtered version For a better dataset description, please visit the official site of the source dataset: [LINK](https://huggingface.co/datasets/mlqa)

**This dataset was prepared by converting mlqa dataset**. I've concatenated versions of the dataset for languages of interest and retrieved a text answers from "answers" column. **I additionaly share the code which I used to convert the original dataset to make everything more clear** ``` def download_mlqa(subset_name): dataset_valid = load_dataset("mlqa", subset_name, split="validation").to_pandas() dataset_test = load_dataset("mlqa", subset_name, split="test").to_pandas() full_dataset = pd.concat([dataset_valid, dataset_test]) full_dataset.reset_index(drop=True, inplace=True) return full_dataset needed_langs = ["mlqa.en.en", "mlqa.de.de", "mlqa.ar.ar", "mlqa.es.es", "mlqa.vi.vi", "mlqa.zh.zh"] datasets = [] for lang in tqdm(needed_langs): dataset = download_mlqa(lang) dataset["lang"] = lang.split(".")[2] datasets.append(dataset) full_mlqa = pd.concat(datasets) full_mlqa.reset_index(drop=True, inplace=True) full_mlqa["answer"] = [answer_dict["text"][0] for answer_dict in full_mlqa["answers"]] full_mlqa.drop("answers", axis=1, inplace=True) ``` **How to download** ``` from datasets import load_dataset data = load_dataset("dkoterwa/mlqa_filtered") ```