import nibabel as nib import os import numpy as np import datasets import boto3 _DESCRIPTION = """\ fMIR dataset from openneuro.org """ class fMRIConfig(datasets.BuilderConfig): """Builder Config for fMRI""" def __init__(self, data_url, num_datasets=[10, 1, 1], num_frames=8, sampling_rate=1, **kwargs): """BuilderConfig for fMRI. Args: data_url: `string`, url to download the zip file from. **kwargs: keyword arguments forwarded to super. """ super(fMRIConfig, self).__init__(**kwargs) self.data_url = data_url self.num_datasets = num_datasets self.num_frames = num_frames self.sampling_rate = sampling_rate class fMRITest(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ fMRIConfig(name="test1", data_url="openneuro.org", version=VERSION, description="fMRI test dataset 1", ), ] DEFAULT_CONFIG_NAME = "test1" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if self.config.name == "test1": # This is the name of the configuration selected in BUILDER_CONFIGS above # features = datasets.Features( # { # # "func": np.ndarray(shape=(65,77,65,self.config.duration)), # "func": datasets.Array4D(shape=(None,None,None,self.config.duration), dtype='float32'), # } # ) features = None return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), ) def _split_generators(self, dl_manager): # Connect to S3 s3 = boto3.client('s3') bucket_name = self.config.data_url response = s3.list_objects_v2(Bucket=bucket_name, Prefix='', Delimiter='/') folder_names = [x['Prefix'].split('/')[-2] for x in response.get('CommonPrefixes', [])] print(len(folder_names)) ndatasets = self.config.num_datasets if isinstance(ndatasets, int): ndatasets = [ndatasets, 10, 10] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "bucket_name": bucket_name, "folder_names": folder_names[:ndatasets[0]], }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "bucket_name": bucket_name, "folder_names": folder_names[ndatasets[0]:ndatasets[0] + ndatasets[1]], }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "bucket_name": bucket_name, "folder_names": folder_names[ndatasets[0] + ndatasets[1]:ndatasets[0] + ndatasets[1] + ndatasets[2]], }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, bucket_name, folder_names): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. s3 = boto3.client('s3') tmp_dir = os.path.join('tmp', folder_names[0]) if len(folder_names) > 0 else 'tmp' if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) anat_file = os.path.join(tmp_dir, 'T1w.nii.gz') func_file = os.path.join(tmp_dir, 'bold.nii.gz') duration = self.config.num_frames * self.config.sampling_rate for folder_name in folder_names: response = s3.list_objects_v2(Bucket=bucket_name, Prefix=folder_name) for obj in response.get('Contents', []): obj_key = obj['Key'] if '_T1w.nii.gz' in obj_key: # Anatomical # Store subject number to verify anat/func match anat_subj = obj_key.split('/')[1] # Download the object to tmp location s3.download_file(bucket_name, obj_key, anat_file) # store the head of anat_subj anat_header = nib.load(anat_file).header elif '_bold.nii.gz' in obj_key: # Functional func_subj = obj_key.split('/')[1] if func_subj == anat_subj: s3.download_file(bucket_name, obj_key, func_file) func = nib.load(func_file).get_fdata().astype('float16') func = np.transpose(func, (3, 0, 1, 2)) # T, X, Y, Z shape = func.shape # print(f"{obj_key}", shape) for i in range(0, shape[0] - duration + self.config.sampling_rate, duration): func_slice = func[i:i+duration:self.config.sampling_rate, :, :, :] # print(f"{obj_key}-{i}", func_slice.shape) yield f"{obj_key}-{i}", { "func": func_slice, }