--- configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: utterance_ID dtype: int64 - name: text dtype: string - name: speaker dtype: string - name: emotion dtype: string - name: video_name dtype: string splits: - name: train num_bytes: 1198989.1453851238 num_examples: 12529 - name: test num_bytes: 104309.85461487627 num_examples: 1090 download_size: 614184 dataset_size: 1303299.0 --- # Dataset Card for "SemEval_traindata_emotions" Как был получен ```python from datasets import load_dataset import datasets from torchvision.io import read_video import json import torch import os from torch.utils.data import Dataset, DataLoader import tqdm dataset_path = "./SemEval-2024_Task3/training_data/Subtask_2_train.json" dataset = json.loads(open(dataset_path).read()) print(len(dataset)) all_conversations = [] for item in dataset: all_conversations.extend(item["conversation"]) print(len(all_conversations)) all_data = datasets.Dataset.from_list(all_conversations) all_data = all_data.train_test_split( test_size=0.08, seed=42, ) all_data.push_to_hub( "dim/SemEval_training_data_emotions", token=open("./hf_token").read(), ) ```