# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F import torchvision.transforms as T from gmflow.gmflow import GMFlow from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, ControlNetModel, UNet2DConditionModel from diffusers.models.attention_processor import Attention, AttnProcessor from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import BaseOutput, deprecate, logging from diffusers.utils.torch_utils import is_compiled_module, randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name def coords_grid(b, h, w, homogeneous=False, device=None): y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] stacks = [x, y] if homogeneous: ones = torch.ones_like(x) # [H, W] stacks.append(ones) grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] if device is not None: grid = grid.to(device) return grid def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False): # img: [B, C, H, W] # sample_coords: [B, 2, H, W] in image scale if sample_coords.size(1) != 2: # [B, H, W, 2] sample_coords = sample_coords.permute(0, 3, 1, 2) b, _, h, w = sample_coords.shape # Normalize to [-1, 1] x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) if return_mask: mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W] return img, mask return img def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"): b, c, h, w = feature.size() assert flow.size(1) == 2 grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] grid = grid.to(feature.dtype) return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask) def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5): # fwd_flow, bwd_flow: [B, 2, H, W] # alpha and beta values are following UnFlow # (https://arxiv.org/abs/1711.07837) assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W] warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) threshold = alpha * flow_mag + beta fwd_occ = (diff_fwd > threshold).float() # [B, H, W] bwd_occ = (diff_bwd > threshold).float() return fwd_occ, bwd_occ @torch.no_grad() def get_warped_and_mask(flow_model, image1, image2, image3=None, pixel_consistency=False, device=None): if image3 is None: image3 = image1 padder = InputPadder(image1.shape, padding_factor=8) image1, image2 = padder.pad(image1[None].to(device), image2[None].to(device)) results_dict = flow_model( image1, image2, attn_splits_list=[2], corr_radius_list=[-1], prop_radius_list=[-1], pred_bidir_flow=True ) flow_pr = results_dict["flow_preds"][-1] # [B, 2, H, W] fwd_flow = padder.unpad(flow_pr[0]).unsqueeze(0) # [1, 2, H, W] bwd_flow = padder.unpad(flow_pr[1]).unsqueeze(0) # [1, 2, H, W] fwd_occ, bwd_occ = forward_backward_consistency_check(fwd_flow, bwd_flow) # [1, H, W] float if pixel_consistency: warped_image1 = flow_warp(image1, bwd_flow) bwd_occ = torch.clamp( bwd_occ + (abs(image2 - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1 ).unsqueeze(0) warped_results = flow_warp(image3, bwd_flow) return warped_results, bwd_occ, bwd_flow blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18)) @dataclass class TextToVideoSDPipelineOutput(BaseOutput): """ Output class for text-to-video pipelines. Args: frames (`List[np.ndarray]` or `torch.FloatTensor`) List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as a `torch` tensor. The length of the list denotes the video length (the number of frames). """ frames: Union[List[np.ndarray], torch.FloatTensor] @torch.no_grad() def find_flat_region(mask): device = mask.device kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], [-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device) kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], [1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device) mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode="replicate") grad_x = torch.nn.functional.conv2d(mask_, kernel_x) grad_y = torch.nn.functional.conv2d(mask_, kernel_y) return ((abs(grad_x) + abs(grad_y)) == 0).float()[0] class AttnState: STORE = 0 LOAD = 1 LOAD_AND_STORE_PREV = 2 def __init__(self): self.reset() @property def state(self): return self.__state @property def timestep(self): return self.__timestep def set_timestep(self, t): self.__timestep = t def reset(self): self.__state = AttnState.STORE self.__timestep = 0 def to_load(self): self.__state = AttnState.LOAD def to_load_and_store_prev(self): self.__state = AttnState.LOAD_AND_STORE_PREV class CrossFrameAttnProcessor(AttnProcessor): """ Cross frame attention processor. Each frame attends the first frame and previous frame. Args: attn_state: Whether the model is processing the first frame or an intermediate frame """ def __init__(self, attn_state: AttnState): super().__init__() self.attn_state = attn_state self.first_maps = {} self.prev_maps = {} def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None): # Is self attention if encoder_hidden_states is None: t = self.attn_state.timestep if self.attn_state.state == AttnState.STORE: self.first_maps[t] = hidden_states.detach() self.prev_maps[t] = hidden_states.detach() res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) else: if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV: tmp = hidden_states.detach() cross_map = torch.cat((self.first_maps[t], self.prev_maps[t]), dim=1) res = super().__call__(attn, hidden_states, cross_map, attention_mask, temb) if self.attn_state.state == AttnState.LOAD_AND_STORE_PREV: self.prev_maps[t] = tmp else: res = super().__call__(attn, hidden_states, encoder_hidden_states, attention_mask, temb) return res def prepare_image(image): if isinstance(image, torch.Tensor): # Batch single image if image.ndim == 3: image = image.unsqueeze(0) image = image.to(dtype=torch.float32) else: # preprocess image if isinstance(image, (PIL.Image.Image, np.ndarray)): image = [image] if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): image = [np.array(i.convert("RGB"))[None, :] for i in image] image = np.concatenate(image, axis=0) elif isinstance(image, list) and isinstance(image[0], np.ndarray): image = np.concatenate([i[None, :] for i in image], axis=0) image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 return image class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline): r""" Pipeline for video-to-video translation using Stable Diffusion with Rerender Algorithm. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) In addition the pipeline inherits the following loading methods: - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ _optional_components = ["safety_checker", "feature_extractor"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder=None, requires_safety_checker: bool = True, device=None, ): super().__init__( vae, text_encoder, tokenizer, unet, controlnet, scheduler, safety_checker, feature_extractor, image_encoder, requires_safety_checker, ) self.to(device) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) if isinstance(controlnet, (list, tuple)): controlnet = MultiControlNetModel(controlnet) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, controlnet=controlnet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) self.control_image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False ) self.register_to_config(requires_safety_checker=requires_safety_checker) self.attn_state = AttnState() attn_processor_dict = {} for k in unet.attn_processors.keys(): if k.startswith("up"): attn_processor_dict[k] = CrossFrameAttnProcessor(self.attn_state) else: attn_processor_dict[k] = AttnProcessor() self.unet.set_attn_processor(attn_processor_dict) flow_model = GMFlow( feature_channels=128, num_scales=1, upsample_factor=8, num_head=1, attention_type="swin", ffn_dim_expansion=4, num_transformer_layers=6, ).to(self.device) checkpoint = torch.utils.model_zoo.load_url( "https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth", map_location=lambda storage, loc: storage, ) weights = checkpoint["model"] if "model" in checkpoint else checkpoint flow_model.load_state_dict(weights, strict=False) flow_model.eval() self.flow_model = flow_model # Modified from src/diffusers/pipelines/controlnet/pipeline_controlnet.StableDiffusionControlNetImg2ImgPipeline.check_inputs def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, controlnet_conditioning_scale=1.0, control_guidance_start=0.0, control_guidance_end=1.0, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) # `prompt` needs more sophisticated handling when there are multiple # conditionings. if isinstance(self.controlnet, MultiControlNetModel): if isinstance(prompt, list): logger.warning( f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" " prompts. The conditionings will be fixed across the prompts." ) is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( self.controlnet, torch._dynamo.eval_frame.OptimizedModule ) # Check `controlnet_conditioning_scale` if ( isinstance(self.controlnet, ControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, ControlNetModel) ): if not isinstance(controlnet_conditioning_scale, float): raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") elif ( isinstance(self.controlnet, MultiControlNetModel) or is_compiled and isinstance(self.controlnet._orig_mod, MultiControlNetModel) ): if isinstance(controlnet_conditioning_scale, list): if any(isinstance(i, list) for i in controlnet_conditioning_scale): raise ValueError("A single batch of multiple conditionings are supported at the moment.") elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( self.controlnet.nets ): raise ValueError( "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" " the same length as the number of controlnets" ) else: assert False if len(control_guidance_start) != len(control_guidance_end): raise ValueError( f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." ) if isinstance(self.controlnet, MultiControlNetModel): if len(control_guidance_start) != len(self.controlnet.nets): raise ValueError( f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." ) for start, end in zip(control_guidance_start, control_guidance_end): if start >= end: raise ValueError( f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." ) if start < 0.0: raise ValueError(f"control guidance start: {start} can't be smaller than 0.") if end > 1.0: raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image def prepare_control_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: init_latents = image else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.vae.encode(image).latent_dist.sample(generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, frames: Union[List[np.ndarray], torch.FloatTensor] = None, control_frames: Union[List[np.ndarray], torch.FloatTensor] = None, strength: float = 0.8, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_conditioning_scale: Union[float, List[float]] = 0.8, guess_mode: bool = False, control_guidance_start: Union[float, List[float]] = 0.0, control_guidance_end: Union[float, List[float]] = 1.0, warp_start: Union[float, List[float]] = 0.0, warp_end: Union[float, List[float]] = 0.3, mask_start: Union[float, List[float]] = 0.5, mask_end: Union[float, List[float]] = 0.8, smooth_boundary: bool = True, mask_strength: Union[float, List[float]] = 0.5, inner_strength: Union[float, List[float]] = 0.9, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process. control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation. strength ('float'): SDEdit strength. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original unet. If multiple ControlNets are specified in init, you can set the corresponding scale as a list. Note that by default, we use a smaller conditioning scale for inpainting than for [`~StableDiffusionControlNetPipeline.__call__`]. guess_mode (`bool`, *optional*, defaults to `False`): In this mode, the ControlNet encoder will try best to recognize the content of the input image even if you remove all prompts. The `guidance_scale` between 3.0 and 5.0 is recommended. control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): The percentage of total steps at which the controlnet starts applying. control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): The percentage of total steps at which the controlnet stops applying. warp_start (`float`): Shape-aware fusion start timestep. warp_end (`float`): Shape-aware fusion end timestep. mask_start (`float`): Pixel-aware fusion start timestep. mask_end (`float`):Pixel-aware fusion end timestep. smooth_boundary (`bool`): Smooth fusion boundary. Set `True` to prevent artifacts at boundary. mask_strength (`float`): Pixel-aware fusion strength. inner_strength (`float`): Pixel-aware fusion detail level. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet # align format for control guidance if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): control_guidance_start = len(control_guidance_end) * [control_guidance_start] elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): control_guidance_end = len(control_guidance_start) * [control_guidance_end] elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 control_guidance_start, control_guidance_end = ( mult * [control_guidance_start], mult * [control_guidance_end], ) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, controlnet_conditioning_scale, control_guidance_start, control_guidance_end, ) # 2. Define call parameters # Currently we only support 1 prompt if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): assert False else: assert False num_images_per_prompt = 1 device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) global_pool_conditions = ( controlnet.config.global_pool_conditions if isinstance(controlnet, ControlNetModel) else controlnet.nets[0].config.global_pool_conditions ) guess_mode = guess_mode or global_pool_conditions # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Process the first frame height, width = None, None output_frames = [] self.attn_state.reset() # 4.1 prepare frames image = self.image_processor.preprocess(frames[0]).to(dtype=torch.float32) first_image = image[0] # C, H, W # 4.2 Prepare controlnet_conditioning_image # Currently we only support single control if isinstance(controlnet, ControlNetModel): control_image = self.prepare_control_image( image=control_frames[0], width=width, height=height, batch_size=batch_size, num_images_per_prompt=1, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) else: assert False # 4.3 Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size) # 4.4 Prepare latent variables latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 4.5 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 4.6 Create tensor stating which controlnets to keep controlnet_keep = [] for i in range(len(timesteps)): keeps = [ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for s, e in zip(control_guidance_start, control_guidance_end) ] controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) first_x0_list = [] # 4.7 Denoising loop num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order with self.progress_bar(total=cur_num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): self.attn_state.set_timestep(t.item()) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # controlnet(s) inference if guess_mode and do_classifier_free_guidance: # Infer ControlNet only for the conditional batch. control_model_input = latents control_model_input = self.scheduler.scale_model_input(control_model_input, t) controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] else: control_model_input = latent_model_input controlnet_prompt_embeds = prompt_embeds if isinstance(controlnet_keep[i], list): cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] else: controlnet_cond_scale = controlnet_conditioning_scale if isinstance(controlnet_cond_scale, list): controlnet_cond_scale = controlnet_cond_scale[0] cond_scale = controlnet_cond_scale * controlnet_keep[i] down_block_res_samples, mid_block_res_sample = self.controlnet( control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False, ) if guess_mode and do_classifier_free_guidance: # Infered ControlNet only for the conditional batch. # To apply the output of ControlNet to both the unconditional and conditional batches, # add 0 to the unconditional batch to keep it unchanged. down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) alpha_prod_t = self.scheduler.alphas_cumprod[t] beta_prod_t = 1 - alpha_prod_t pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) first_x0 = pred_x0.detach() first_x0_list.append(first_x0) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents first_result = image prev_result = image do_denormalize = [True] * image.shape[0] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) output_frames.append(image[0]) # 5. Process each frame for idx in range(1, len(frames)): image = frames[idx] prev_image = frames[idx - 1] control_image = control_frames[idx] # 5.1 prepare frames image = self.image_processor.preprocess(image).to(dtype=torch.float32) prev_image = self.image_processor.preprocess(prev_image).to(dtype=torch.float32) warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask( self.flow_model, first_image, image[0], first_result, False, self.device ) blend_mask_0 = blur(F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4)) blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1) warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask( self.flow_model, prev_image[0], image[0], prev_result, False, self.device ) blend_mask_pre = blur(F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4)) blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1) warp_mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8) warp_flow = F.interpolate(bwd_flow_0 / 8.0, scale_factor=1.0 / 8, mode="bilinear") # 5.2 Prepare controlnet_conditioning_image # Currently we only support single control if isinstance(controlnet, ControlNetModel): control_image = self.prepare_control_image( image=control_image, width=width, height=height, batch_size=batch_size, num_images_per_prompt=1, device=device, dtype=controlnet.dtype, do_classifier_free_guidance=do_classifier_free_guidance, guess_mode=guess_mode, ) else: assert False # 5.3 Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size) skip_t = int(num_inference_steps * (1 - strength)) warp_start_t = int(warp_start * num_inference_steps) warp_end_t = int(warp_end * num_inference_steps) mask_start_t = int(mask_start * num_inference_steps) mask_end_t = int(mask_end * num_inference_steps) # 5.4 Prepare latent variables init_latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator, ) # 5.5 Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 5.6 Create tensor stating which controlnets to keep controlnet_keep = [] for i in range(len(timesteps)): keeps = [ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for s, e in zip(control_guidance_start, control_guidance_end) ] controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) # 5.7 Denoising loop num_warmup_steps = len(timesteps) - cur_num_inference_steps * self.scheduler.order def denoising_loop(latents, mask=None, xtrg=None, noise_rescale=None): dir_xt = 0 latents_dtype = latents.dtype with self.progress_bar(total=cur_num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): self.attn_state.set_timestep(t.item()) if i + skip_t >= mask_start_t and i + skip_t <= mask_end_t and xtrg is not None: rescale = torch.maximum(1.0 - mask, (1 - mask**2) ** 0.5 * inner_strength) if noise_rescale is not None: rescale = (1.0 - mask) * (1 - noise_rescale) + rescale * noise_rescale noise = randn_tensor(xtrg.shape, generator=generator, device=device, dtype=xtrg.dtype) latents_ref = self.scheduler.add_noise(xtrg, noise, t) latents = latents_ref * mask + (1.0 - mask) * (latents - dir_xt) + rescale * dir_xt latents = latents.to(latents_dtype) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # controlnet(s) inference if guess_mode and do_classifier_free_guidance: # Infer ControlNet only for the conditional batch. control_model_input = latents control_model_input = self.scheduler.scale_model_input(control_model_input, t) controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] else: control_model_input = latent_model_input controlnet_prompt_embeds = prompt_embeds if isinstance(controlnet_keep[i], list): cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] else: controlnet_cond_scale = controlnet_conditioning_scale if isinstance(controlnet_cond_scale, list): controlnet_cond_scale = controlnet_cond_scale[0] cond_scale = controlnet_cond_scale * controlnet_keep[i] down_block_res_samples, mid_block_res_sample = self.controlnet( control_model_input, t, encoder_hidden_states=controlnet_prompt_embeds, controlnet_cond=control_image, conditioning_scale=cond_scale, guess_mode=guess_mode, return_dict=False, ) if guess_mode and do_classifier_free_guidance: # Infered ControlNet only for the conditional batch. # To apply the output of ControlNet to both the unconditional and conditional batches, # add 0 to the unconditional batch to keep it unchanged. down_block_res_samples = [ torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples ] mid_block_res_sample = torch.cat( [torch.zeros_like(mid_block_res_sample), mid_block_res_sample] ) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, down_block_additional_residuals=down_block_res_samples, mid_block_additional_residual=mid_block_res_sample, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # Get pred_x0 from scheduler alpha_prod_t = self.scheduler.alphas_cumprod[t] beta_prod_t = 1 - alpha_prod_t pred_x0 = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) if i + skip_t >= warp_start_t and i + skip_t <= warp_end_t: # warp x_0 pred_x0 = ( flow_warp(first_x0_list[i], warp_flow, mode="nearest") * warp_mask + (1 - warp_mask) * pred_x0 ) # get x_t from x_0 latents = self.scheduler.add_noise(pred_x0, noise_pred, t).to(latents_dtype) prev_t = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps if i == len(timesteps) - 1: alpha_t_prev = 1.0 else: alpha_t_prev = self.scheduler.alphas_cumprod[prev_t] dir_xt = (1.0 - alpha_t_prev) ** 0.5 * noise_pred # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[ 0 ] # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) return latents if mask_start_t <= mask_end_t: self.attn_state.to_load() else: self.attn_state.to_load_and_store_prev() latents = denoising_loop(init_latents) if mask_start_t <= mask_end_t: direct_result = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] blend_results = (1 - blend_mask_pre) * warped_pre + blend_mask_pre * direct_result blend_results = (1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1) blend_mask = blur(F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4)) blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1) blend_results = blend_results.to(latents.dtype) xtrg = self.vae.encode(blend_results).latent_dist.sample(generator) xtrg = self.vae.config.scaling_factor * xtrg blend_results_rec = self.vae.decode(xtrg / self.vae.config.scaling_factor, return_dict=False)[0] xtrg_rec = self.vae.encode(blend_results_rec).latent_dist.sample(generator) xtrg_rec = self.vae.config.scaling_factor * xtrg_rec xtrg_ = xtrg + (xtrg - xtrg_rec) blend_results_rec_new = self.vae.decode(xtrg_ / self.vae.config.scaling_factor, return_dict=False)[0] tmp = (abs(blend_results_rec_new - blend_results).mean(dim=1, keepdims=True) > 0.25).float() mask_x = F.max_pool2d( (F.interpolate(tmp, scale_factor=1 / 8.0, mode="bilinear") > 0).float(), kernel_size=3, stride=1, padding=1, ) mask = 1 - F.max_pool2d(1 - blend_mask, kernel_size=8) # * (1-mask_x) if smooth_boundary: noise_rescale = find_flat_region(mask) else: noise_rescale = torch.ones_like(mask) xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask xtrg = xtrg.to(latents.dtype) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, cur_num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) self.attn_state.to_load_and_store_prev() latents = denoising_loop(init_latents, mask * mask_strength, xtrg, noise_rescale) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents prev_result = image do_denormalize = [True] * image.shape[0] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) output_frames.append(image[0]) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return output_frames return TextToVideoSDPipelineOutput(frames=output_frames) class InputPadder: """Pads images such that dimensions are divisible by 8""" def __init__(self, dims, mode="sintel", padding_factor=8): self.ht, self.wd = dims[-2:] pad_ht = (((self.ht // padding_factor) + 1) * padding_factor - self.ht) % padding_factor pad_wd = (((self.wd // padding_factor) + 1) * padding_factor - self.wd) % padding_factor if mode == "sintel": self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] else: self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, 0, pad_ht] def pad(self, *inputs): return [F.pad(x, self._pad, mode="replicate") for x in inputs] def unpad(self, x): ht, wd = x.shape[-2:] c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] return x[..., c[0] : c[1], c[2] : c[3]]