# Inspired by: https://github.com/Mikubill/sd-webui-controlnet/discussions/1236 and https://github.com/Mikubill/sd-webui-controlnet/discussions/1280 from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import PIL.Image import torch from diffusers import StableDiffusionPipeline from diffusers.models.attention import BasicTransformerBlock from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg from diffusers.utils import PIL_INTERPOLATION, logging from diffusers.utils.torch_utils import randn_tensor logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import UniPCMultistepScheduler >>> from diffusers.utils import load_image >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") >>> pipe = StableDiffusionReferencePipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=torch.float16 ).to('cuda:0') >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config) >>> result_img = pipe(ref_image=input_image, prompt="1girl", num_inference_steps=20, reference_attn=True, reference_adain=True).images[0] >>> result_img.show() ``` """ def torch_dfs(model: torch.nn.Module): result = [model] for child in model.children(): result += torch_dfs(child) return result class StableDiffusionReferencePipeline(StableDiffusionPipeline): def _default_height_width(self, height, width, image): # NOTE: It is possible that a list of images have different # dimensions for each image, so just checking the first image # is not _exactly_ correct, but it is simple. while isinstance(image, list): image = image[0] if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[2] height = (height // 8) * 8 # round down to nearest multiple of 8 if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[3] width = (width // 8) * 8 # round down to nearest multiple of 8 return height, width def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): if not isinstance(image, torch.Tensor): if isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): images = [] for image_ in image: image_ = image_.convert("RGB") image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) image_ = np.array(image_) image_ = image_[None, :] images.append(image_) image = images image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = (image - 0.5) / 0.5 image = image.transpose(0, 3, 1, 2) image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): refimage = refimage.to(device=device, dtype=dtype) # encode the mask image into latents space so we can concatenate it to the latents if isinstance(generator, list): ref_image_latents = [ self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) for i in range(batch_size) ] ref_image_latents = torch.cat(ref_image_latents, dim=0) else: ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) ref_image_latents = self.vae.config.scaling_factor * ref_image_latents # duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method if ref_image_latents.shape[0] < batch_size: if not batch_size % ref_image_latents.shape[0] == 0: raise ValueError( "The passed images and the required batch size don't match. Images are supposed to be duplicated" f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." " Make sure the number of images that you pass is divisible by the total requested batch size." ) ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) # aligning device to prevent device errors when concating it with the latent model input ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) return ref_image_latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, attention_auto_machine_weight: float = 1.0, gn_auto_machine_weight: float = 1.0, style_fidelity: float = 0.5, reference_attn: bool = True, reference_adain: bool = True, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. ref_image (`torch.FloatTensor`, `PIL.Image.Image`): The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can also be accepted as an image. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.7): Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when using zero terminal SNR. attention_auto_machine_weight (`float`): Weight of using reference query for self attention's context. If attention_auto_machine_weight=1.0, use reference query for all self attention's context. gn_auto_machine_weight (`float`): Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. style_fidelity (`float`): style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, elif style_fidelity=0.0, prompt more important, else balanced. reference_attn (`bool`): Whether to use reference query for self attention's context. reference_adain (`bool`): Whether to use reference adain. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." # 0. Default height and width to unet height, width = self._default_height_width(height, width, ref_image) # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, ) # 4. Preprocess reference image ref_image = self.prepare_image( image=ref_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=prompt_embeds.dtype, ) # 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 6. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 7. Prepare reference latent variables ref_image_latents = self.prepare_ref_latents( ref_image, batch_size * num_images_per_prompt, prompt_embeds.dtype, device, generator, do_classifier_free_guidance, ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 9. Modify self attention and group norm MODE = "write" uc_mask = ( torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) .type_as(ref_image_latents) .bool() ) def hacked_basic_transformer_inner_forward( self, hidden_states: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, ): if self.use_ada_layer_norm: norm_hidden_states = self.norm1(hidden_states, timestep) elif self.use_ada_layer_norm_zero: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) else: norm_hidden_states = self.norm1(hidden_states) # 1. Self-Attention cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} if self.only_cross_attention: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) else: if MODE == "write": self.bank.append(norm_hidden_states.detach().clone()) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if MODE == "read": if attention_auto_machine_weight > self.attn_weight: attn_output_uc = self.attn1( norm_hidden_states, encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), # attention_mask=attention_mask, **cross_attention_kwargs, ) attn_output_c = attn_output_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: attn_output_c[uc_mask] = self.attn1( norm_hidden_states[uc_mask], encoder_hidden_states=norm_hidden_states[uc_mask], **cross_attention_kwargs, ) attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc self.bank.clear() else: attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.use_ada_layer_norm_zero: attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = attn_output + hidden_states if self.attn2 is not None: norm_hidden_states = ( self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) ) # 2. Cross-Attention attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) if self.use_ada_layer_norm_zero: norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) if self.use_ada_layer_norm_zero: ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = ff_output + hidden_states return hidden_states def hacked_mid_forward(self, *args, **kwargs): eps = 1e-6 x = self.original_forward(*args, **kwargs) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append(mean) self.var_bank.append(var) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) var_acc = sum(self.var_bank) / float(len(self.var_bank)) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 x_uc = (((x - mean) / std) * std_acc) + mean_acc x_c = x_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: x_c[uc_mask] = x[uc_mask] x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc self.mean_bank = [] self.var_bank = [] return x def hack_CrossAttnDownBlock2D_forward( self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used output_states = () for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc output_states = output_states + (hidden_states,) if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_DownBlock2D_forward(self, hidden_states, temb=None): eps = 1e-6 output_states = () for i, resnet in enumerate(self.resnets): hidden_states = resnet(hidden_states, temb) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc output_states = output_states + (hidden_states,) if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states = output_states + (hidden_states,) return hidden_states, output_states def hacked_CrossAttnUpBlock2D_forward( self, hidden_states: torch.FloatTensor, res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], temb: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, cross_attention_kwargs: Optional[Dict[str, Any]] = None, upsample_size: Optional[int] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, ): eps = 1e-6 # TODO(Patrick, William) - attention mask is not used for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) hidden_states = attn( hidden_states, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, return_dict=False, )[0] if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): eps = 1e-6 for i, resnet in enumerate(self.resnets): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) hidden_states = resnet(hidden_states, temb) if MODE == "write": if gn_auto_machine_weight >= self.gn_weight: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) self.mean_bank.append([mean]) self.var_bank.append([var]) if MODE == "read": if len(self.mean_bank) > 0 and len(self.var_bank) > 0: var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc hidden_states_c = hidden_states_uc.clone() if do_classifier_free_guidance and style_fidelity > 0: hidden_states_c[uc_mask] = hidden_states[uc_mask] hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc if MODE == "read": self.mean_bank = [] self.var_bank = [] if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states if reference_attn: attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) for i, module in enumerate(attn_modules): module._original_inner_forward = module.forward module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) module.bank = [] module.attn_weight = float(i) / float(len(attn_modules)) if reference_adain: gn_modules = [self.unet.mid_block] self.unet.mid_block.gn_weight = 0 down_blocks = self.unet.down_blocks for w, module in enumerate(down_blocks): module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) gn_modules.append(module) up_blocks = self.unet.up_blocks for w, module in enumerate(up_blocks): module.gn_weight = float(w) / float(len(up_blocks)) gn_modules.append(module) for i, module in enumerate(gn_modules): if getattr(module, "original_forward", None) is None: module.original_forward = module.forward if i == 0: # mid_block module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) elif isinstance(module, CrossAttnDownBlock2D): module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) elif isinstance(module, DownBlock2D): module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) elif isinstance(module, CrossAttnUpBlock2D): module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) elif isinstance(module, UpBlock2D): module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) module.mean_bank = [] module.var_bank = [] module.gn_weight *= 2 # 10. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # ref only part noise = randn_tensor( ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype ) ref_xt = self.scheduler.add_noise( ref_image_latents, noise, t.reshape( 1, ), ) ref_xt = torch.cat([ref_xt] * 2) if do_classifier_free_guidance else ref_xt ref_xt = self.scheduler.scale_model_input(ref_xt, t) MODE = "write" self.unet( ref_xt, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, ) # predict the noise residual MODE = "read" noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)