# -*- coding: utf-8 -*- import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def preprocess(image, w, h): if isinstance(image, torch.Tensor): return image elif isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = 2.0 * image - 1.0 image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) return image def slerp(t, v0, v1, DOT_THRESHOLD=0.9995): if not isinstance(v0, np.ndarray): inputs_are_torch = True input_device = v0.device v0 = v0.cpu().numpy() v1 = v1.cpu().numpy() dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) if np.abs(dot) > DOT_THRESHOLD: v2 = (1 - t) * v0 + t * v1 else: theta_0 = np.arccos(dot) sin_theta_0 = np.sin(theta_0) theta_t = theta_0 * t sin_theta_t = np.sin(theta_t) s0 = np.sin(theta_0 - theta_t) / sin_theta_0 s1 = sin_theta_t / sin_theta_0 v2 = s0 * v0 + s1 * v1 if inputs_are_torch: v2 = torch.from_numpy(v2).to(input_device) return v2 def spherical_dist_loss(x, y): x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def set_requires_grad(model, value): for param in model.parameters(): param.requires_grad = value class CLIPGuidedImagesMixingStableDiffusion(DiffusionPipeline): def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, clip_model: CLIPModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], feature_extractor: CLIPFeatureExtractor, coca_model=None, coca_tokenizer=None, coca_transform=None, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, clip_model=clip_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, coca_model=coca_model, coca_tokenizer=coca_tokenizer, coca_transform=coca_transform, ) self.feature_extractor_size = ( feature_extractor.size if isinstance(feature_extractor.size, int) else feature_extractor.size["shortest_edge"] ) self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) set_requires_grad(self.text_encoder, False) set_requires_grad(self.clip_model, False) def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory slice_size = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(slice_size) def disable_attention_slicing(self): self.enable_attention_slicing(None) def freeze_vae(self): set_requires_grad(self.vae, False) def unfreeze_vae(self): set_requires_grad(self.vae, True) def freeze_unet(self): set_requires_grad(self.unet, False) def unfreeze_unet(self): set_requires_grad(self.unet, True) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, dtype, device, generator=None): if not isinstance(image, torch.Tensor): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(image)}") image = image.to(device=device, dtype=dtype) if isinstance(generator, list): init_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.vae.encode(image).latent_dist.sample(generator) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor init_latents = 0.18215 * init_latents init_latents = init_latents.repeat_interleave(batch_size, dim=0) noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents def get_image_description(self, image): transformed_image = self.coca_transform(image).unsqueeze(0) with torch.no_grad(), torch.cuda.amp.autocast(): generated = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype)) generated = self.coca_tokenizer.decode(generated[0].cpu().numpy()) return generated.split("")[0].replace("", "").rstrip(" .,") def get_clip_image_embeddings(self, image, batch_size): clip_image_input = self.feature_extractor.preprocess(image) clip_image_features = torch.from_numpy(clip_image_input["pixel_values"][0]).unsqueeze(0).to(self.device).half() image_embeddings_clip = self.clip_model.get_image_features(clip_image_features) image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) image_embeddings_clip = image_embeddings_clip.repeat_interleave(batch_size, dim=0) return image_embeddings_clip @torch.enable_grad() def cond_fn( self, latents, timestep, index, text_embeddings, noise_pred_original, original_image_embeddings_clip, clip_guidance_scale, ): latents = latents.detach().requires_grad_() latent_model_input = self.scheduler.scale_model_input(latents, timestep) # predict the noise residual noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): alpha_prod_t = self.scheduler.alphas_cumprod[timestep] beta_prod_t = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) fac = torch.sqrt(beta_prod_t) sample = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] sample = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor sample = 1 / 0.18215 * sample image = self.vae.decode(sample).sample image = (image / 2 + 0.5).clamp(0, 1) image = transforms.Resize(self.feature_extractor_size)(image) image = self.normalize(image).to(latents.dtype) image_embeddings_clip = self.clip_model.get_image_features(image) image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) loss = spherical_dist_loss(image_embeddings_clip, original_image_embeddings_clip).mean() * clip_guidance_scale grads = -torch.autograd.grad(loss, latents)[0] if isinstance(self.scheduler, LMSDiscreteScheduler): latents = latents.detach() + grads * (sigma**2) noise_pred = noise_pred_original else: noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads return noise_pred, latents @torch.no_grad() def __call__( self, style_image: Union[torch.FloatTensor, PIL.Image.Image], content_image: Union[torch.FloatTensor, PIL.Image.Image], style_prompt: Optional[str] = None, content_prompt: Optional[str] = None, height: Optional[int] = 512, width: Optional[int] = 512, noise_strength: float = 0.6, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, batch_size: Optional[int] = 1, eta: float = 0.0, clip_guidance_scale: Optional[float] = 100, generator: Optional[torch.Generator] = None, output_type: Optional[str] = "pil", return_dict: bool = True, slerp_latent_style_strength: float = 0.8, slerp_prompt_style_strength: float = 0.1, slerp_clip_image_style_strength: float = 0.1, ): if isinstance(generator, list) and len(generator) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(generator)} generators.") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if isinstance(generator, torch.Generator) and batch_size > 1: generator = [generator] + [None] * (batch_size - 1) coca_is_none = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] coca_is_none = [x[0] for x in coca_is_none if x[1]] coca_is_none_str = ", ".join(coca_is_none) # generate prompts with coca model if prompt is None if content_prompt is None: if len(coca_is_none): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) content_prompt = self.get_image_description(content_image) if style_prompt is None: if len(coca_is_none): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) style_prompt = self.get_image_description(style_image) # get prompt text embeddings for content and style content_text_input = self.tokenizer( content_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) content_text_embeddings = self.text_encoder(content_text_input.input_ids.to(self.device))[0] style_text_input = self.tokenizer( style_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) style_text_embeddings = self.text_encoder(style_text_input.input_ids.to(self.device))[0] text_embeddings = slerp(slerp_prompt_style_strength, content_text_embeddings, style_text_embeddings) # duplicate text embeddings for each generation per prompt text_embeddings = text_embeddings.repeat_interleave(batch_size, dim=0) # set timesteps accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) extra_set_kwargs = {} if accepts_offset: extra_set_kwargs["offset"] = 1 self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, noise_strength, self.device) latent_timestep = timesteps[:1].repeat(batch_size) # Preprocess image preprocessed_content_image = preprocess(content_image, width, height) content_latents = self.prepare_latents( preprocessed_content_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator ) preprocessed_style_image = preprocess(style_image, width, height) style_latents = self.prepare_latents( preprocessed_style_image, latent_timestep, batch_size, text_embeddings.dtype, self.device, generator ) latents = slerp(slerp_latent_style_strength, content_latents, style_latents) if clip_guidance_scale > 0: content_clip_image_embedding = self.get_clip_image_embeddings(content_image, batch_size) style_clip_image_embedding = self.get_clip_image_embeddings(style_image, batch_size) clip_image_embeddings = slerp( slerp_clip_image_style_strength, content_clip_image_embedding, style_clip_image_embedding ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: max_length = content_text_input.input_ids.shape[-1] uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt uncond_embeddings = uncond_embeddings.repeat_interleave(batch_size, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (batch_size, self.unet.config.in_channels, height // 8, width // 8) latents_dtype = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( self.device ) else: latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator with self.progress_bar(total=num_inference_steps): for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform classifier free guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: text_embeddings_for_guidance = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) noise_pred, latents = self.cond_fn( latents, t, i, text_embeddings_for_guidance, noise_pred, clip_image_embeddings, clip_guidance_scale, ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor latents = 1 / 0.18215 * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)