from typing import List, Optional, Tuple, Union import torch from diffusers import DiffusionPipeline from diffusers.configuration_utils import ConfigMixin from diffusers.pipeline_utils import ImagePipelineOutput from diffusers.schedulers.scheduling_utils import SchedulerMixin class IADBScheduler(SchedulerMixin, ConfigMixin): """ IADBScheduler is a scheduler for the Iterative α-(de)Blending denoising method. It is simple and minimalist. For more details, see the original paper: https://arxiv.org/abs/2305.03486 and the blog post: https://ggx-research.github.io/publication/2023/05/10/publication-iadb.html """ def step( self, model_output: torch.FloatTensor, timestep: int, x_alpha: torch.FloatTensor, ) -> torch.FloatTensor: """ Predict the sample at the previous timestep by reversing the ODE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): direct output from learned diffusion model. It is the direction from x0 to x1. timestep (`float`): current timestep in the diffusion chain. x_alpha (`torch.FloatTensor`): x_alpha sample for the current timestep Returns: `torch.FloatTensor`: the sample at the previous timestep """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) alpha = timestep / self.num_inference_steps alpha_next = (timestep + 1) / self.num_inference_steps d = model_output x_alpha = x_alpha + (alpha_next - alpha) * d return x_alpha def set_timesteps(self, num_inference_steps: int): self.num_inference_steps = num_inference_steps def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, alpha: torch.FloatTensor, ) -> torch.FloatTensor: return original_samples * alpha + noise * (1 - alpha) def __len__(self): return self.config.num_train_timesteps class IADBPipeline(DiffusionPipeline): r""" This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Parameters: unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of [`DDPMScheduler`], or [`DDIMScheduler`]. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: r""" Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. """ # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size, int): image_shape = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: image_shape = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) image = torch.randn(image_shape, generator=generator, device=self.device, dtype=self.unet.dtype) # set step values self.scheduler.set_timesteps(num_inference_steps) x_alpha = image.clone() for t in self.progress_bar(range(num_inference_steps)): alpha = t / num_inference_steps # 1. predict noise model_output model_output = self.unet(x_alpha, torch.tensor(alpha, device=x_alpha.device)).sample # 2. step x_alpha = self.scheduler.step(model_output, t, x_alpha) image = (x_alpha * 0.5 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)