import inspect from typing import List, Optional, Union import numpy as np import PIL.Image import torch from torch import nn from torch.nn import functional as F from torchvision import transforms from transformers import CLIPImageProcessor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel, ) from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import PIL_INTERPOLATION, deprecate from diffusers.utils.torch_utils import randn_tensor EXAMPLE_DOC_STRING = """ Examples: ```py from io import BytesIO import requests import torch from diffusers import DiffusionPipeline from PIL import Image from transformers import CLIPImageProcessor, CLIPModel feature_extractor = CLIPImageProcessor.from_pretrained( "laion/CLIP-ViT-B-32-laion2B-s34B-b79K" ) clip_model = CLIPModel.from_pretrained( "laion/CLIP-ViT-B-32-laion2B-s34B-b79K", torch_dtype=torch.float16 ) guided_pipeline = DiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4", # custom_pipeline="clip_guided_stable_diffusion", custom_pipeline="/home/njindal/diffusers/examples/community/clip_guided_stable_diffusion.py", clip_model=clip_model, feature_extractor=feature_extractor, torch_dtype=torch.float16, ) guided_pipeline.enable_attention_slicing() guided_pipeline = guided_pipeline.to("cuda") prompt = "fantasy book cover, full moon, fantasy forest landscape, golden vector elements, fantasy magic, dark light night, intricate, elegant, sharp focus, illustration, highly detailed, digital painting, concept art, matte, art by WLOP and Artgerm and Albert Bierstadt, masterpiece" url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" response = requests.get(url) init_image = Image.open(BytesIO(response.content)).convert("RGB") image = guided_pipeline( prompt=prompt, num_inference_steps=30, image=init_image, strength=0.75, guidance_scale=7.5, clip_guidance_scale=100, num_cutouts=4, use_cutouts=False, ).images[0] display(image) ``` """ def preprocess(image, w, h): if isinstance(image, torch.Tensor): return image elif isinstance(image, PIL.Image.Image): image = [image] if isinstance(image[0], PIL.Image.Image): image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] image = np.concatenate(image, axis=0) image = np.array(image).astype(np.float32) / 255.0 image = image.transpose(0, 3, 1, 2) image = 2.0 * image - 1.0 image = torch.from_numpy(image) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, dim=0) return image class MakeCutouts(nn.Module): def __init__(self, cut_size, cut_power=1.0): super().__init__() self.cut_size = cut_size self.cut_power = cut_power def forward(self, pixel_values, num_cutouts): sideY, sideX = pixel_values.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] for _ in range(num_cutouts): size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) offsetx = torch.randint(0, sideX - size + 1, ()) offsety = torch.randint(0, sideY - size + 1, ()) cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) return torch.cat(cutouts) def spherical_dist_loss(x, y): x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def set_requires_grad(model, value): for param in model.parameters(): param.requires_grad = value class CLIPGuidedStableDiffusion(DiffusionPipeline, StableDiffusionMixin): """CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 - https://github.com/Jack000/glid-3-xl - https://github.dev/crowsonkb/k-diffusion """ def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, clip_model: CLIPModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], feature_extractor: CLIPImageProcessor, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, clip_model=clip_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, ) self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) self.cut_out_size = ( feature_extractor.size if isinstance(feature_extractor.size, int) else feature_extractor.size["shortest_edge"] ) self.make_cutouts = MakeCutouts(self.cut_out_size) set_requires_grad(self.text_encoder, False) set_requires_grad(self.clip_model, False) def freeze_vae(self): set_requires_grad(self.vae, False) def unfreeze_vae(self): set_requires_grad(self.vae, True) def freeze_unet(self): set_requires_grad(self.unet, False) def unfreeze_unet(self): set_requires_grad(self.unet, True) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if isinstance(generator, list): init_latents = [ self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = self.vae.encode(image).latent_dist.sample(generator) init_latents = self.vae.config.scaling_factor * init_latents if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // init_latents.shape[0] init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents return latents @torch.enable_grad() def cond_fn( self, latents, timestep, index, text_embeddings, noise_pred_original, text_embeddings_clip, clip_guidance_scale, num_cutouts, use_cutouts=True, ): latents = latents.detach().requires_grad_() latent_model_input = self.scheduler.scale_model_input(latents, timestep) # predict the noise residual noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler)): alpha_prod_t = self.scheduler.alphas_cumprod[timestep] beta_prod_t = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) fac = torch.sqrt(beta_prod_t) sample = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, LMSDiscreteScheduler): sigma = self.scheduler.sigmas[index] sample = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler)} not supported") sample = 1 / self.vae.config.scaling_factor * sample image = self.vae.decode(sample).sample image = (image / 2 + 0.5).clamp(0, 1) if use_cutouts: image = self.make_cutouts(image, num_cutouts) else: image = transforms.Resize(self.cut_out_size)(image) image = self.normalize(image).to(latents.dtype) image_embeddings_clip = self.clip_model.get_image_features(image) image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) if use_cutouts: dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) dists = dists.view([num_cutouts, sample.shape[0], -1]) loss = dists.sum(2).mean(0).sum() * clip_guidance_scale else: loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale grads = -torch.autograd.grad(loss, latents)[0] if isinstance(self.scheduler, LMSDiscreteScheduler): latents = latents.detach() + grads * (sigma**2) noise_pred = noise_pred_original else: noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads return noise_pred, latents @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], height: Optional[int] = 512, width: Optional[int] = 512, image: Union[torch.Tensor, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, clip_guidance_scale: Optional[float] = 100, clip_prompt: Optional[Union[str, List[str]]] = None, num_cutouts: Optional[int] = 4, use_cutouts: Optional[bool] = True, generator: Optional[torch.Generator] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, ): if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") # get prompt text embeddings text_input = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] # duplicate text embeddings for each generation per prompt text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) # set timesteps accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) extra_set_kwargs = {} if accepts_offset: extra_set_kwargs["offset"] = 1 self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, self.device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # Preprocess image image = preprocess(image, width, height) if latents is None: latents = self.prepare_latents( image, latent_timestep, batch_size, num_images_per_prompt, text_embeddings.dtype, self.device, generator, ) if clip_guidance_scale > 0: if clip_prompt is not None: clip_text_input = self.tokenizer( clip_prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ).input_ids.to(self.device) else: clip_text_input = text_input.input_ids.to(self.device) text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) # duplicate text embeddings clip for each generation per prompt text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: max_length = text_input.input_ids.shape[-1] uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # duplicate unconditional embeddings for each generation per prompt uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. latents_shape = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) latents_dtype = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( self.device ) else: latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") latents = latents.to(self.device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator with self.progress_bar(total=num_inference_steps): for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample # perform classifier free guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: text_embeddings_for_guidance = ( text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings ) noise_pred, latents = self.cond_fn( latents, t, i, text_embeddings_for_guidance, noise_pred, text_embeddings_clip, clip_guidance_scale, num_cutouts, use_cutouts, ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # scale and decode the image latents with vae latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None)