# Community Scripts **Community scripts** consist of inference examples using Diffusers pipelines that have been added by the community. Please have a look at the following table to get an overview of all community examples. Click on the **Code Example** to get a copy-and-paste code example that you can try out. If a community script doesn't work as expected, please open an issue and ping the author on it. | Example | Description | Code Example | Colab | Author | |:--------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------:| | Using IP-Adapter with Negative Noise | Using negative noise with IP-adapter to better control the generation (see the [original post](https://github.com/huggingface/diffusers/discussions/7167) on the forum for more details) | [IP-Adapter Negative Noise](#ip-adapter-negative-noise) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/ip_adapter_negative_noise.ipynb) | [Álvaro Somoza](https://github.com/asomoza)| | Asymmetric Tiling |configure seamless image tiling independently for the X and Y axes | [Asymmetric Tiling](#Asymmetric-Tiling ) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/asymetric_tiling.ipynb) | [alexisrolland](https://github.com/alexisrolland)| | Prompt Scheduling Callback |Allows changing prompts during a generation | [Prompt Scheduling-Callback](#Prompt-Scheduling-Callback ) |[Notebook](https://github.com/huggingface/notebooks/blob/main/diffusers/prompt_scheduling_callback.ipynb) | [hlky](https://github.com/hlky)| ## Example usages ### IP Adapter Negative Noise Diffusers pipelines are fully integrated with IP-Adapter, which allows you to prompt the diffusion model with an image. However, it does not support negative image prompts (there is no `negative_ip_adapter_image` argument) the same way it supports negative text prompts. When you pass an `ip_adapter_image,` it will create a zero-filled tensor as a negative image. This script shows you how to create a negative noise from `ip_adapter_image` and use it to significantly improve the generation quality while preserving the composition of images. [cubiq](https://github.com/cubiq) initially developed this feature in his [repository](https://github.com/cubiq/ComfyUI_IPAdapter_plus). The community script was contributed by [asomoza](https://github.com/Somoza). You can find more details about this experimentation [this discussion](https://github.com/huggingface/diffusers/discussions/7167) IP-Adapter without negative noise |source|result| |---|---| |![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923_normal](https://github.com/huggingface/diffusers/assets/5442875/3432e25a-ece6-45f4-a3f4-fca354f40b5b)| IP-Adapter with negative noise |source|result| |---|---| |![20240229150812](https://github.com/huggingface/diffusers/assets/5442875/901d8bd8-7a59-4fe7-bda1-a0e0d6c7dffd)|![20240229163923](https://github.com/huggingface/diffusers/assets/5442875/736fd15a-36ba-40c0-a7d8-6ec1ac26f788)| ```python import torch from diffusers import AutoencoderKL, DPMSolverMultistepScheduler, StableDiffusionXLPipeline from diffusers.models import ImageProjection from diffusers.utils import load_image def encode_image( image_encoder, feature_extractor, image, device, num_images_per_prompt, output_hidden_states=None, negative_image=None, ): dtype = next(image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) if negative_image is None: uncond_image_enc_hidden_states = image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] else: if not isinstance(negative_image, torch.Tensor): negative_image = feature_extractor(negative_image, return_tensors="pt").pixel_values negative_image = negative_image.to(device=device, dtype=dtype) uncond_image_enc_hidden_states = image_encoder(negative_image, output_hidden_states=True).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds @torch.no_grad() def prepare_ip_adapter_image_embeds( unet, image_encoder, feature_extractor, ip_adapter_image, do_classifier_free_guidance, device, num_images_per_prompt, ip_adapter_negative_image=None, ): if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters." ) image_embeds = [] for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = encode_image( image_encoder, feature_extractor, single_ip_adapter_image, device, 1, output_hidden_state, negative_image=ip_adapter_negative_image, ) single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) single_negative_image_embeds = torch.stack([single_negative_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) single_image_embeds = single_image_embeds.to(device) image_embeds.append(single_image_embeds) return image_embeds vae = AutoencoderKL.from_pretrained( "madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, ).to("cuda") pipeline = StableDiffusionXLPipeline.from_pretrained( "RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.float16, vae=vae, variant="fp16", ).to("cuda") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) pipeline.scheduler.config.use_karras_sigmas = True pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.safetensors", image_encoder_folder="models/image_encoder", ) pipeline.set_ip_adapter_scale(0.7) ip_image = load_image("source.png") negative_ip_image = load_image("noise.png") image_embeds = prepare_ip_adapter_image_embeds( unet=pipeline.unet, image_encoder=pipeline.image_encoder, feature_extractor=pipeline.feature_extractor, ip_adapter_image=[[ip_image]], do_classifier_free_guidance=True, device="cuda", num_images_per_prompt=1, ip_adapter_negative_image=negative_ip_image, ) prompt = "cinematic photo of a cyborg in the city, 4k, high quality, intricate, highly detailed" negative_prompt = "blurry, smooth, plastic" image = pipeline( prompt=prompt, negative_prompt=negative_prompt, ip_adapter_image_embeds=image_embeds, guidance_scale=6.0, num_inference_steps=25, generator=torch.Generator(device="cpu").manual_seed(1556265306), ).images[0] image.save("result.png") ``` ### Asymmetric Tiling Stable Diffusion is not trained to generate seamless textures. However, you can use this simple script to add tiling to your generation. This script is contributed by [alexisrolland](https://github.com/alexisrolland). See more details in the [this issue](https://github.com/huggingface/diffusers/issues/556) |Generated|Tiled| |---|---| |![20240313003235_573631814](https://github.com/huggingface/diffusers/assets/5442875/eca174fb-06a4-464e-a3a7-00dbb024543e)|![wall](https://github.com/huggingface/diffusers/assets/5442875/b4aa774b-2a6a-4316-a8eb-8f30b5f4d024)| ```py import torch from typing import Optional from diffusers import StableDiffusionPipeline from diffusers.models.lora import LoRACompatibleConv def seamless_tiling(pipeline, x_axis, y_axis): def asymmetric_conv2d_convforward(self, input: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None): self.paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0) self.paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3]) working = torch.nn.functional.pad(input, self.paddingX, mode=x_mode) working = torch.nn.functional.pad(working, self.paddingY, mode=y_mode) return torch.nn.functional.conv2d(working, weight, bias, self.stride, torch.nn.modules.utils._pair(0), self.dilation, self.groups) x_mode = 'circular' if x_axis else 'constant' y_mode = 'circular' if y_axis else 'constant' targets = [pipeline.vae, pipeline.text_encoder, pipeline.unet] convolution_layers = [] for target in targets: for module in target.modules(): if isinstance(module, torch.nn.Conv2d): convolution_layers.append(module) for layer in convolution_layers: if isinstance(layer, LoRACompatibleConv) and layer.lora_layer is None: layer.lora_layer = lambda * x: 0 layer._conv_forward = asymmetric_conv2d_convforward.__get__(layer, torch.nn.Conv2d) return pipeline pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, use_safetensors=True) pipeline.enable_model_cpu_offload() prompt = ["texture of a red brick wall"] seed = 123456 generator = torch.Generator(device='cuda').manual_seed(seed) pipeline = seamless_tiling(pipeline=pipeline, x_axis=True, y_axis=True) image = pipeline( prompt=prompt, width=512, height=512, num_inference_steps=20, guidance_scale=7, num_images_per_prompt=1, generator=generator ).images[0] seamless_tiling(pipeline=pipeline, x_axis=False, y_axis=False) torch.cuda.empty_cache() image.save('image.png') ``` ### Prompt Scheduling callback Prompt scheduling callback allows changing prompts during a generation, like [prompt editing in A1111](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#prompt-editing) ```python from diffusers import StableDiffusionPipeline from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks from diffusers.configuration_utils import register_to_config import torch from typing import Any, Dict, Tuple, Union class SDPromptSchedulingCallback(PipelineCallback): @register_to_config def __init__( self, encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], cutoff_step_ratio=None, cutoff_step_index=None, ): super().__init__( cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index ) tensor_inputs = ["prompt_embeds"] def callback_fn( self, pipeline, step_index, timestep, callback_kwargs ) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index if isinstance(self.config.encoded_prompt, tuple): prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt else: prompt_embeds = self.config.encoded_prompt # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: if pipeline.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) callback_kwargs[self.tensor_inputs[0]] = prompt_embeds return callback_kwargs pipeline: StableDiffusionPipeline = StableDiffusionPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ).to("cuda") pipeline.safety_checker = None pipeline.requires_safety_checker = False callback = MultiPipelineCallbacks( [ SDPromptSchedulingCallback( encoded_prompt=pipeline.encode_prompt( prompt=f"prompt {index}", negative_prompt=f"negative prompt {index}", device=pipeline._execution_device, num_images_per_prompt=1, # pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran do_classifier_free_guidance=True, ), cutoff_step_index=index, ) for index in range(1, 20) ] ) image = pipeline( prompt="prompt" negative_prompt="negative prompt", callback_on_step_end=callback, callback_on_step_end_tensor_inputs=["prompt_embeds"], ).images[0] torch.cuda.empty_cache() image.save('image.png') ``` ```python from diffusers import StableDiffusionXLPipeline from diffusers.callbacks import PipelineCallback, MultiPipelineCallbacks from diffusers.configuration_utils import register_to_config import torch from typing import Any, Dict, Tuple, Union class SDXLPromptSchedulingCallback(PipelineCallback): @register_to_config def __init__( self, encoded_prompt: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], add_text_embeds: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], add_time_ids: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]], cutoff_step_ratio=None, cutoff_step_index=None, ): super().__init__( cutoff_step_ratio=cutoff_step_ratio, cutoff_step_index=cutoff_step_index ) tensor_inputs = ["prompt_embeds", "add_text_embeds", "add_time_ids"] def callback_fn( self, pipeline, step_index, timestep, callback_kwargs ) -> Dict[str, Any]: cutoff_step_ratio = self.config.cutoff_step_ratio cutoff_step_index = self.config.cutoff_step_index if isinstance(self.config.encoded_prompt, tuple): prompt_embeds, negative_prompt_embeds = self.config.encoded_prompt else: prompt_embeds = self.config.encoded_prompt if isinstance(self.config.add_text_embeds, tuple): add_text_embeds, negative_add_text_embeds = self.config.add_text_embeds else: add_text_embeds = self.config.add_text_embeds if isinstance(self.config.add_time_ids, tuple): add_time_ids, negative_add_time_ids = self.config.add_time_ids else: add_time_ids = self.config.add_time_ids # Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio cutoff_step = ( cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio) ) if step_index == cutoff_step: if pipeline.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) add_text_embeds = torch.cat([negative_add_text_embeds, add_text_embeds]) add_time_ids = torch.cat([negative_add_time_ids, add_time_ids]) callback_kwargs[self.tensor_inputs[0]] = prompt_embeds callback_kwargs[self.tensor_inputs[1]] = add_text_embeds callback_kwargs[self.tensor_inputs[2]] = add_time_ids return callback_kwargs pipeline: StableDiffusionXLPipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, ).to("cuda") callbacks = [] for index in range(1, 20): ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = pipeline.encode_prompt( prompt=f"prompt {index}", negative_prompt=f"prompt {index}", device=pipeline._execution_device, num_images_per_prompt=1, # pipeline.do_classifier_free_guidance can't be accessed until after pipeline is ran do_classifier_free_guidance=True, ) text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) add_time_ids = pipeline._get_add_time_ids( (1024, 1024), (0, 0), (1024, 1024), dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) negative_add_time_ids = pipeline._get_add_time_ids( (1024, 1024), (0, 0), (1024, 1024), dtype=prompt_embeds.dtype, text_encoder_projection_dim=text_encoder_projection_dim, ) callbacks.append( SDXLPromptSchedulingCallback( encoded_prompt=(prompt_embeds, negative_prompt_embeds), add_text_embeds=(pooled_prompt_embeds, negative_pooled_prompt_embeds), add_time_ids=(add_time_ids, negative_add_time_ids), cutoff_step_index=index, ) ) callback = MultiPipelineCallbacks(callbacks) image = pipeline( prompt="prompt", negative_prompt="negative prompt", callback_on_step_end=callback, callback_on_step_end_tensor_inputs=[ "prompt_embeds", "add_text_embeds", "add_time_ids", ], ).images[0] ```