diff --git "a/v0.32.0/fresco_v2v.py" "b/v0.32.0/fresco_v2v.py" new file mode 100644--- /dev/null +++ "b/v0.32.0/fresco_v2v.py" @@ -0,0 +1,2511 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import gc +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +import torch.utils.model_zoo +from einops import rearrange, repeat +from gmflow.gmflow import GMFlow +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin +from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from diffusers.models.attention_processor import AttnProcessor2_0 +from diffusers.models.lora import adjust_lora_scale_text_encoder +from diffusers.models.unets.unet_2d_condition import UNet2DConditionOutput +from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel +from diffusers.pipelines.controlnet.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline +from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + USE_PEFT_BACKEND, + deprecate, + logging, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import is_compiled_module, randn_tensor + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +def clear_cache(): + gc.collect() + torch.cuda.empty_cache() + + +def coords_grid(b, h, w, homogeneous=False, device=None): + y, x = torch.meshgrid(torch.arange(h), torch.arange(w)) # [H, W] + + stacks = [x, y] + + if homogeneous: + ones = torch.ones_like(x) # [H, W] + stacks.append(ones) + + grid = torch.stack(stacks, dim=0).float() # [2, H, W] or [3, H, W] + + grid = grid[None].repeat(b, 1, 1, 1) # [B, 2, H, W] or [B, 3, H, W] + + if device is not None: + grid = grid.to(device) + + return grid + + +def bilinear_sample(img, sample_coords, mode="bilinear", padding_mode="zeros", return_mask=False): + # img: [B, C, H, W] + # sample_coords: [B, 2, H, W] in image scale + if sample_coords.size(1) != 2: # [B, H, W, 2] + sample_coords = sample_coords.permute(0, 3, 1, 2) + + b, _, h, w = sample_coords.shape + + # Normalize to [-1, 1] + x_grid = 2 * sample_coords[:, 0] / (w - 1) - 1 + y_grid = 2 * sample_coords[:, 1] / (h - 1) - 1 + + grid = torch.stack([x_grid, y_grid], dim=-1) # [B, H, W, 2] + + img = F.grid_sample(img, grid, mode=mode, padding_mode=padding_mode, align_corners=True) + + if return_mask: + mask = (x_grid >= -1) & (y_grid >= -1) & (x_grid <= 1) & (y_grid <= 1) # [B, H, W] + + return img, mask + + return img + + +class Dilate: + def __init__(self, kernel_size=7, channels=1, device="cpu"): + self.kernel_size = kernel_size + self.channels = channels + gaussian_kernel = torch.ones(1, 1, self.kernel_size, self.kernel_size) + gaussian_kernel = gaussian_kernel.repeat(self.channels, 1, 1, 1) + self.mean = (self.kernel_size - 1) // 2 + gaussian_kernel = gaussian_kernel.to(device) + self.gaussian_filter = gaussian_kernel + + def __call__(self, x): + x = F.pad(x, (self.mean, self.mean, self.mean, self.mean), "replicate") + return torch.clamp(F.conv2d(x, self.gaussian_filter, bias=None), 0, 1) + + +def flow_warp(feature, flow, mask=False, mode="bilinear", padding_mode="zeros"): + b, c, h, w = feature.size() + assert flow.size(1) == 2 + + grid = coords_grid(b, h, w).to(flow.device) + flow # [B, 2, H, W] + grid = grid.to(feature.dtype) + return bilinear_sample(feature, grid, mode=mode, padding_mode=padding_mode, return_mask=mask) + + +def forward_backward_consistency_check(fwd_flow, bwd_flow, alpha=0.01, beta=0.5): + # fwd_flow, bwd_flow: [B, 2, H, W] + # alpha and beta values are following UnFlow + # (https://arxiv.org/abs/1711.07837) + assert fwd_flow.dim() == 4 and bwd_flow.dim() == 4 + assert fwd_flow.size(1) == 2 and bwd_flow.size(1) == 2 + flow_mag = torch.norm(fwd_flow, dim=1) + torch.norm(bwd_flow, dim=1) # [B, H, W] + + warped_bwd_flow = flow_warp(bwd_flow, fwd_flow) # [B, 2, H, W] + warped_fwd_flow = flow_warp(fwd_flow, bwd_flow) # [B, 2, H, W] + + diff_fwd = torch.norm(fwd_flow + warped_bwd_flow, dim=1) # [B, H, W] + diff_bwd = torch.norm(bwd_flow + warped_fwd_flow, dim=1) + + threshold = alpha * flow_mag + beta + + fwd_occ = (diff_fwd > threshold).float() # [B, H, W] + bwd_occ = (diff_bwd > threshold).float() + + return fwd_occ, bwd_occ + + +def numpy2tensor(img): + x0 = torch.from_numpy(img.copy()).float().cuda() / 255.0 * 2.0 - 1.0 + x0 = torch.stack([x0], dim=0) + # einops.rearrange(x0, 'b h w c -> b c h w').clone() + return x0.permute(0, 3, 1, 2) + + +def calc_mean_std(feat, eps=1e-5, chunk=1): + size = feat.size() + assert len(size) == 4 + if chunk == 2: + feat = torch.cat(feat.chunk(2), dim=3) + N, C = size[:2] + feat_var = feat.view(N // chunk, C, -1).var(dim=2) + eps + feat_std = feat_var.sqrt().view(N, C, 1, 1) + feat_mean = feat.view(N // chunk, C, -1).mean(dim=2).view(N // chunk, C, 1, 1) + return feat_mean.repeat(chunk, 1, 1, 1), feat_std.repeat(chunk, 1, 1, 1) + + +def adaptive_instance_normalization(content_feat, style_feat, chunk=1): + assert content_feat.size()[:2] == style_feat.size()[:2] + size = content_feat.size() + style_mean, style_std = calc_mean_std(style_feat, chunk) + content_mean, content_std = calc_mean_std(content_feat) + + normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size) + return normalized_feat * style_std.expand(size) + style_mean.expand(size) + + +def optimize_feature( + sample, flows, occs, correlation_matrix=[], intra_weight=1e2, iters=20, unet_chunk_size=2, optimize_temporal=True +): + """ + FRESO-guided latent feature optimization + * optimize spatial correspondence (match correlation_matrix) + * optimize temporal correspondence (match warped_image) + """ + if (flows is None or occs is None or (not optimize_temporal)) and ( + intra_weight == 0 or len(correlation_matrix) == 0 + ): + return sample + # flows=[fwd_flows, bwd_flows]: (N-1)*2*H1*W1 + # occs=[fwd_occs, bwd_occs]: (N-1)*H1*W1 + # sample: 2N*C*H*W + torch.cuda.empty_cache() + video_length = sample.shape[0] // unet_chunk_size + latent = rearrange(sample.to(torch.float32), "(b f) c h w -> b f c h w", f=video_length) + + cs = torch.nn.Parameter((latent.detach().clone())) + optimizer = torch.optim.Adam([cs], lr=0.2) + + # unify resolution + if flows is not None and occs is not None: + scale = sample.shape[2] * 1.0 / flows[0].shape[2] + kernel = int(1 / scale) + bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear").repeat( + unet_chunk_size, 1, 1, 1 + ) + bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel).repeat( + unet_chunk_size, 1, 1, 1 + ) # 2(N-1)*1*H1*W1 + fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear").repeat( + unet_chunk_size, 1, 1, 1 + ) + fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel).repeat( + unet_chunk_size, 1, 1, 1 + ) # 2(N-1)*1*H1*W1 + # match frame 0,1,2,3 and frame 1,2,3,0 + reshuffle_list = list(range(1, video_length)) + [0] + + # attention_probs is the GRAM matrix of the normalized feature + attention_probs = None + for tmp in correlation_matrix: + if sample.shape[2] * sample.shape[3] == tmp.shape[1]: + attention_probs = tmp # 2N*HW*HW + break + + n_iter = [0] + while n_iter[0] < iters: + + def closure(): + optimizer.zero_grad() + + loss = 0 + + # temporal consistency loss + if optimize_temporal and flows is not None and occs is not None: + c1 = rearrange(cs[:, :], "b f c h w -> (b f) c h w") + c2 = rearrange(cs[:, reshuffle_list], "b f c h w -> (b f) c h w") + warped_image1 = flow_warp(c1, bwd_flow_) + warped_image2 = flow_warp(c2, fwd_flow_) + loss = ( + abs((c2 - warped_image1) * (1 - bwd_occ_)) + abs((c1 - warped_image2) * (1 - fwd_occ_)) + ).mean() * 2 + + # spatial consistency loss + if attention_probs is not None and intra_weight > 0: + cs_vector = rearrange(cs, "b f c h w -> (b f) (h w) c") + # attention_scores = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) + # cs_attention_probs = attention_scores.softmax(dim=-1) + cs_vector = cs_vector / ((cs_vector**2).sum(dim=2, keepdims=True) ** 0.5) + cs_attention_probs = torch.bmm(cs_vector, cs_vector.transpose(-1, -2)) + tmp = F.l1_loss(cs_attention_probs, attention_probs) * intra_weight + loss = tmp + loss + + loss.backward() + n_iter[0] += 1 + + return loss + + optimizer.step(closure) + + torch.cuda.empty_cache() + return adaptive_instance_normalization(rearrange(cs.data.to(sample.dtype), "b f c h w -> (b f) c h w"), sample) + + +@torch.no_grad() +def warp_tensor(sample, flows, occs, saliency, unet_chunk_size): + """ + Warp images or features based on optical flow + Fuse the warped imges or features based on occusion masks and saliency map + """ + scale = sample.shape[2] * 1.0 / flows[0].shape[2] + kernel = int(1 / scale) + bwd_flow_ = F.interpolate(flows[1] * scale, scale_factor=scale, mode="bilinear") + bwd_occ_ = F.max_pool2d(occs[1].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 + if scale == 1: + bwd_occ_ = Dilate(kernel_size=13, device=sample.device)(bwd_occ_) + fwd_flow_ = F.interpolate(flows[0] * scale, scale_factor=scale, mode="bilinear") + fwd_occ_ = F.max_pool2d(occs[0].unsqueeze(1), kernel_size=kernel) # (N-1)*1*H1*W1 + if scale == 1: + fwd_occ_ = Dilate(kernel_size=13, device=sample.device)(fwd_occ_) + scale2 = sample.shape[2] * 1.0 / saliency.shape[2] + saliency = F.interpolate(saliency, scale_factor=scale2, mode="bilinear") + latent = sample.to(torch.float32) + video_length = sample.shape[0] // unet_chunk_size + warp_saliency = flow_warp(saliency, bwd_flow_) + warp_saliency_ = flow_warp(saliency[0:1], fwd_flow_[video_length - 1 : video_length]) + + for j in range(unet_chunk_size): + for ii in range(video_length - 1): + i = video_length * j + ii + warped_image = flow_warp(latent[i : i + 1], bwd_flow_[ii : ii + 1]) + mask = (1 - bwd_occ_[ii : ii + 1]) * saliency[ii + 1 : ii + 2] * warp_saliency[ii : ii + 1] + latent[i + 1 : i + 2] = latent[i + 1 : i + 2] * (1 - mask) + warped_image * mask + i = video_length * j + ii = video_length - 1 + warped_image = flow_warp(latent[i : i + 1], fwd_flow_[ii : ii + 1]) + mask = (1 - fwd_occ_[ii : ii + 1]) * saliency[ii : ii + 1] * warp_saliency_ + latent[ii + i : ii + i + 1] = latent[ii + i : ii + i + 1] * (1 - mask) + warped_image * mask + + return latent.to(sample.dtype) + + +def my_forward( + self, + steps=[], + layers=[0, 1, 2, 3], + flows=None, + occs=None, + correlation_matrix=[], + intra_weight=1e2, + iters=20, + optimize_temporal=True, + saliency=None, +): + """ + Hacked pipe.unet.forward() + copied from https://github.com/huggingface/diffusers/blob/v0.19.3/src/diffusers/models/unet_2d_condition.py#L700 + if you are using a new version of diffusers, please copy the source code and modify it accordingly (find [HACK] in the code) + * restore and return the decoder features + * optimize the decoder features + * perform background smoothing + """ + + def forward( + sample: torch.FloatTensor, + timestep: Union[torch.Tensor, float, int], + encoder_hidden_states: torch.Tensor, + class_labels: Optional[torch.Tensor] = None, + timestep_cond: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, + mid_block_additional_residual: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + ) -> Union[UNet2DConditionOutput, Tuple]: + r""" + The [`UNet2DConditionModel`] forward method. + + Args: + sample (`torch.FloatTensor`): + The noisy input tensor with the following shape `(batch, channel, height, width)`. + timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input. + encoder_hidden_states (`torch.FloatTensor`): + The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. + encoder_attention_mask (`torch.Tensor`): + A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If + `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias, + which adds large negative values to the attention scores corresponding to "discard" tokens. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttnProcessor`]. + added_cond_kwargs: (`dict`, *optional*): + A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that + are passed along to the UNet blocks. + + Returns: + [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: + If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise + a `tuple` is returned where the first element is the sample tensor. + """ + # By default samples have to be AT least a multiple of the overall upsampling factor. + # The overall upsampling factor is equal to 2 ** (# num of upsampling layers). + # However, the upsampling interpolation output size can be forced to fit any upsampling size + # on the fly if necessary. + default_overall_up_factor = 2**self.num_upsamplers + + # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` + forward_upsample_size = False + upsample_size = None + + if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): + logger.info("Forward upsample size to force interpolation output size.") + forward_upsample_size = True + + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None: + encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 0. center input if necessary + if self.config.center_input_sample: + sample = 2 * sample - 1.0 + + # 1. time + timesteps = timestep + if not torch.is_tensor(timesteps): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = sample.device.type == "mps" + if isinstance(timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) + elif len(timesteps.shape) == 0: + timesteps = timesteps[None].to(sample.device) + + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + timesteps = timesteps.expand(sample.shape[0]) + + t_emb = self.time_proj(timesteps) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # but time_embedding might actually be running in fp16. so we need to cast here. + # there might be better ways to encapsulate this. + t_emb = t_emb.to(dtype=sample.dtype) + + emb = self.time_embedding(t_emb, timestep_cond) + aug_emb = None + + if self.class_embedding is not None: + if class_labels is None: + raise ValueError("class_labels should be provided when num_class_embeds > 0") + + if self.config.class_embed_type == "timestep": + class_labels = self.time_proj(class_labels) + + # `Timesteps` does not contain any weights and will always return f32 tensors + # there might be better ways to encapsulate this. + class_labels = class_labels.to(dtype=sample.dtype) + + class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) + + if self.config.class_embeddings_concat: + emb = torch.cat([emb, class_emb], dim=-1) + else: + emb = emb + class_emb + + if self.config.addition_embed_type == "text": + aug_emb = self.add_embedding(encoder_hidden_states) + elif self.config.addition_embed_type == "text_image": + # Kandinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + + image_embs = added_cond_kwargs.get("image_embeds") + text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) + aug_emb = self.add_embedding(text_embs, image_embs) + elif self.config.addition_embed_type == "text_time": + # SDXL - style + if "text_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" + ) + text_embeds = added_cond_kwargs.get("text_embeds") + if "time_ids" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" + ) + time_ids = added_cond_kwargs.get("time_ids") + time_embeds = self.add_time_proj(time_ids.flatten()) + time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) + + add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) + add_embeds = add_embeds.to(emb.dtype) + aug_emb = self.add_embedding(add_embeds) + elif self.config.addition_embed_type == "image": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + aug_emb = self.add_embedding(image_embs) + elif self.config.addition_embed_type == "image_hint": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`" + ) + image_embs = added_cond_kwargs.get("image_embeds") + hint = added_cond_kwargs.get("hint") + aug_emb, hint = self.add_embedding(image_embs, hint) + sample = torch.cat([sample, hint], dim=1) + + emb = emb + aug_emb if aug_emb is not None else emb + + if self.time_embed_act is not None: + emb = self.time_embed_act(emb) + + if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": + # Kadinsky 2.1 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) + elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj": + # Kandinsky 2.2 - style + if "image_embeds" not in added_cond_kwargs: + raise ValueError( + f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" + ) + image_embeds = added_cond_kwargs.get("image_embeds") + encoder_hidden_states = self.encoder_hid_proj(image_embeds) + # 2. pre-process + sample = self.conv_in(sample) + + # 3. down + + is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None + is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None + + down_block_res_samples = (sample,) + for downsample_block in self.down_blocks: + if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: + # For t2i-adapter CrossAttnDownBlock2D + additional_residuals = {} + if is_adapter and len(down_block_additional_residuals) > 0: + additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0) + + sample, res_samples = downsample_block( + hidden_states=sample, + temb=emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + **additional_residuals, + ) + else: + sample, res_samples = downsample_block(hidden_states=sample, temb=emb) + + if is_adapter and len(down_block_additional_residuals) > 0: + sample += down_block_additional_residuals.pop(0) + down_block_res_samples += res_samples + + if is_controlnet: + new_down_block_res_samples = () + + for down_block_res_sample, down_block_additional_residual in zip( + down_block_res_samples, down_block_additional_residuals + ): + down_block_res_sample = down_block_res_sample + down_block_additional_residual + new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) + + down_block_res_samples = new_down_block_res_samples + + # 4. mid + if self.mid_block is not None: + sample = self.mid_block( + sample, + emb, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + cross_attention_kwargs=cross_attention_kwargs, + encoder_attention_mask=encoder_attention_mask, + ) + + if is_controlnet: + sample = sample + mid_block_additional_residual + + # 5. up + """ + [HACK] restore the decoder features in up_samples + """ + up_samples = () + # down_samples = () + for i, upsample_block in enumerate(self.up_blocks): + is_final_block = i == len(self.up_blocks) - 1 + + res_samples = down_block_res_samples[-len(upsample_block.resnets) :] + down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] + + """ + [HACK] restore the decoder features in up_samples + [HACK] optimize the decoder features + [HACK] perform background smoothing + """ + if i in layers: + up_samples += (sample,) + if timestep in steps and i in layers: + sample = optimize_feature( + sample, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal=optimize_temporal + ) + if saliency is not None: + sample = warp_tensor(sample, flows, occs, saliency, 2) + + # if we have not reached the final block and need to forward the + # upsample size, we do it here + if not is_final_block and forward_upsample_size: + upsample_size = down_block_res_samples[-1].shape[2:] + + if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: + sample = upsample_block( + hidden_states=sample, + temb=emb, + res_hidden_states_tuple=res_samples, + encoder_hidden_states=encoder_hidden_states, + cross_attention_kwargs=cross_attention_kwargs, + upsample_size=upsample_size, + attention_mask=attention_mask, + encoder_attention_mask=encoder_attention_mask, + ) + else: + sample = upsample_block( + hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size + ) + + # 6. post-process + if self.conv_norm_out: + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + """ + [HACK] return the output feature as well as the decoder features + """ + if not return_dict: + return (sample,) + up_samples + + return UNet2DConditionOutput(sample=sample) + + return forward + + +@torch.no_grad() +def get_single_mapping_ind(bwd_flow, bwd_occ, imgs, scale=1.0): + """ + FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) + Find the correspondence between every pixels in a pair of frames + + [input] + bwd_flow: 1*2*H*W + bwd_occ: 1*H*W i.e., f2 = warp(f1, bwd_flow) * bwd_occ + imgs: 2*3*H*W i.e., [f1,f2] + + [output] + mapping_ind: pixel index correspondence + unlinkedmask: indicate whether a pixel has no correspondence + i.e., f2 = f1[mapping_ind] * unlinkedmask + """ + flows = F.interpolate(bwd_flow, scale_factor=1.0 / scale, mode="bilinear")[0][[1, 0]] / scale # 2*H*W + _, H, W = flows.shape + masks = torch.logical_not(F.interpolate(bwd_occ[None], scale_factor=1.0 / scale, mode="bilinear") > 0.5)[ + 0 + ] # 1*H*W + frames = F.interpolate(imgs, scale_factor=1.0 / scale, mode="bilinear").view(2, 3, -1) # 2*3*HW + grid = torch.stack(torch.meshgrid([torch.arange(H), torch.arange(W)]), dim=0).to(flows.device) # 2*H*W + warp_grid = torch.round(grid + flows) + mask = torch.logical_and( + torch.logical_and( + torch.logical_and(torch.logical_and(warp_grid[0] >= 0, warp_grid[0] < H), warp_grid[1] >= 0), + warp_grid[1] < W, + ), + masks[0], + ).view(-1) # HW + warp_grid = warp_grid.view(2, -1) # 2*HW + warp_ind = (warp_grid[0] * W + warp_grid[1]).to(torch.long) # HW + mapping_ind = torch.zeros_like(warp_ind) - 1 # HW + + for f0ind, f1ind in enumerate(warp_ind): + if mask[f0ind]: + if mapping_ind[f1ind] == -1: + mapping_ind[f1ind] = f0ind + else: + targetv = frames[0, :, f1ind] + pref0ind = mapping_ind[f1ind] + prev = frames[1, :, pref0ind] + v = frames[1, :, f0ind] + if ((prev - targetv) ** 2).mean() > ((v - targetv) ** 2).mean(): + mask[pref0ind] = False + mapping_ind[f1ind] = f0ind + else: + mask[f0ind] = False + + unusedind = torch.arange(len(mask)).to(mask.device)[~mask] + unlinkedmask = mapping_ind == -1 + mapping_ind[unlinkedmask] = unusedind + return mapping_ind, unlinkedmask + + +@torch.no_grad() +def get_mapping_ind(bwd_flows, bwd_occs, imgs, scale=1.0): + """ + FLATTEN: Optical fLow-guided attention (Temoporal-guided attention) + Find pixel correspondence between every consecutive frames in a batch + + [input] + bwd_flow: (N-1)*2*H*W + bwd_occ: (N-1)*H*W + imgs: N*3*H*W + + [output] + fwd_mappings: N*1*HW + bwd_mappings: N*1*HW + flattn_mask: HW*1*N*N + i.e., imgs[i,:,fwd_mappings[i]] corresponds to imgs[0] + i.e., imgs[i,:,fwd_mappings[i]][:,bwd_mappings[i]] restore the original imgs[i] + """ + N, H, W = imgs.shape[0], int(imgs.shape[2] // scale), int(imgs.shape[3] // scale) + iterattn_mask = torch.ones(H * W, N, N, dtype=torch.bool).to(imgs.device) + for i in range(len(imgs) - 1): + one_mask = torch.ones(N, N, dtype=torch.bool).to(imgs.device) + one_mask[: i + 1, i + 1 :] = False + one_mask[i + 1 :, : i + 1] = False + mapping_ind, unlinkedmask = get_single_mapping_ind( + bwd_flows[i : i + 1], bwd_occs[i : i + 1], imgs[i : i + 2], scale + ) + if i == 0: + fwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] + bwd_mapping = [torch.arange(len(mapping_ind)).to(mapping_ind.device)] + iterattn_mask[unlinkedmask[fwd_mapping[-1]]] = torch.logical_and( + iterattn_mask[unlinkedmask[fwd_mapping[-1]]], one_mask + ) + fwd_mapping += [mapping_ind[fwd_mapping[-1]]] + bwd_mapping += [torch.sort(fwd_mapping[-1])[1]] + fwd_mappings = torch.stack(fwd_mapping, dim=0).unsqueeze(1) + bwd_mappings = torch.stack(bwd_mapping, dim=0).unsqueeze(1) + return fwd_mappings, bwd_mappings, iterattn_mask.unsqueeze(1) + + +def apply_FRESCO_opt( + pipe, + steps=[], + layers=[0, 1, 2, 3], + flows=None, + occs=None, + correlation_matrix=[], + intra_weight=1e2, + iters=20, + optimize_temporal=True, + saliency=None, +): + """ + Apply FRESCO-based optimization to a StableDiffusionPipeline + """ + pipe.unet.forward = my_forward( + pipe.unet, steps, layers, flows, occs, correlation_matrix, intra_weight, iters, optimize_temporal, saliency + ) + + +@torch.no_grad() +def get_intraframe_paras(pipe, imgs, frescoProc, prompt_embeds, do_classifier_free_guidance=True, generator=None): + """ + Get parameters for spatial-guided attention and optimization + * perform one step denoising + * collect attention feature, stored in frescoProc.controller.stored_attn['decoder_attn'] + * compute the gram matrix of the normalized feature for spatial consistency loss + """ + + noise_scheduler = pipe.scheduler + timestep = noise_scheduler.timesteps[-1] + device = pipe._execution_device + B, C, H, W = imgs.shape + + frescoProc.controller.disable_controller() + apply_FRESCO_opt(pipe) + frescoProc.controller.clear_store() + frescoProc.controller.enable_store() + + latents = pipe.prepare_latents( + imgs.to(pipe.unet.dtype), timestep, B, 1, prompt_embeds.dtype, device, generator=generator, repeat_noise=False + ) + + latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents + model_output = pipe.unet( + latent_model_input, + timestep, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=None, + return_dict=False, + ) + + frescoProc.controller.disable_store() + + # gram matrix of the normalized feature for spatial consistency loss + correlation_matrix = [] + for tmp in model_output[1:]: + latent_vector = rearrange(tmp, "b c h w -> b (h w) c") + latent_vector = latent_vector / ((latent_vector**2).sum(dim=2, keepdims=True) ** 0.5) + attention_probs = torch.bmm(latent_vector, latent_vector.transpose(-1, -2)) + correlation_matrix += [attention_probs.detach().clone().to(torch.float32)] + del attention_probs, latent_vector, tmp + del model_output + + clear_cache() + + return correlation_matrix + + +@torch.no_grad() +def get_flow_and_interframe_paras(flow_model, imgs): + """ + Get parameters for temporal-guided attention and optimization + * predict optical flow and occlusion mask + * compute pixel index correspondence for FLATTEN + """ + images = torch.stack([torch.from_numpy(img).permute(2, 0, 1).float() for img in imgs], dim=0).cuda() + imgs_torch = torch.cat([numpy2tensor(img) for img in imgs], dim=0) + + reshuffle_list = list(range(1, len(images))) + [0] + + results_dict = flow_model( + images, + images[reshuffle_list], + attn_splits_list=[2], + corr_radius_list=[-1], + prop_radius_list=[-1], + pred_bidir_flow=True, + ) + flow_pr = results_dict["flow_preds"][-1] # [2*B, 2, H, W] + fwd_flows, bwd_flows = flow_pr.chunk(2) # [B, 2, H, W] + fwd_occs, bwd_occs = forward_backward_consistency_check(fwd_flows, bwd_flows) # [B, H, W] + + warped_image1 = flow_warp(images, bwd_flows) + bwd_occs = torch.clamp( + bwd_occs + (abs(images[reshuffle_list] - warped_image1).mean(dim=1) > 255 * 0.25).float(), 0, 1 + ) + + warped_image2 = flow_warp(images[reshuffle_list], fwd_flows) + fwd_occs = torch.clamp(fwd_occs + (abs(images - warped_image2).mean(dim=1) > 255 * 0.25).float(), 0, 1) + + attn_mask = [] + for scale in [8.0, 16.0, 32.0]: + bwd_occs_ = F.interpolate(bwd_occs[:-1].unsqueeze(1), scale_factor=1.0 / scale, mode="bilinear") + attn_mask += [ + torch.cat((bwd_occs_[0:1].reshape(1, -1) > -1, bwd_occs_.reshape(bwd_occs_.shape[0], -1) > 0.5), dim=0) + ] + + fwd_mappings = [] + bwd_mappings = [] + interattn_masks = [] + for scale in [8.0, 16.0]: + fwd_mapping, bwd_mapping, interattn_mask = get_mapping_ind(bwd_flows, bwd_occs, imgs_torch, scale=scale) + fwd_mappings += [fwd_mapping] + bwd_mappings += [bwd_mapping] + interattn_masks += [interattn_mask] + + interattn_paras = {} + interattn_paras["fwd_mappings"] = fwd_mappings + interattn_paras["bwd_mappings"] = bwd_mappings + interattn_paras["interattn_masks"] = interattn_masks + + clear_cache() + + return [fwd_flows, bwd_flows], [fwd_occs, bwd_occs], attn_mask, interattn_paras + + +class AttentionControl: + """ + Control FRESCO-based attention + * enable/diable spatial-guided attention + * enable/diable temporal-guided attention + * enable/diable cross-frame attention + * collect intermediate attention feature (for spatial-guided attention) + """ + + def __init__(self): + self.stored_attn = self.get_empty_store() + self.store = False + self.index = 0 + self.attn_mask = None + self.interattn_paras = None + self.use_interattn = False + self.use_cfattn = False + self.use_intraattn = False + self.intraattn_bias = 0 + self.intraattn_scale_factor = 0.2 + self.interattn_scale_factor = 0.2 + + @staticmethod + def get_empty_store(): + return { + "decoder_attn": [], + } + + def clear_store(self): + del self.stored_attn + torch.cuda.empty_cache() + gc.collect() + self.stored_attn = self.get_empty_store() + self.disable_intraattn() + + # store attention feature of the input frame for spatial-guided attention + def enable_store(self): + self.store = True + + def disable_store(self): + self.store = False + + # spatial-guided attention + def enable_intraattn(self): + self.index = 0 + self.use_intraattn = True + self.disable_store() + if len(self.stored_attn["decoder_attn"]) == 0: + self.use_intraattn = False + + def disable_intraattn(self): + self.index = 0 + self.use_intraattn = False + self.disable_store() + + def disable_cfattn(self): + self.use_cfattn = False + + # cross frame attention + def enable_cfattn(self, attn_mask=None): + if attn_mask: + if self.attn_mask: + del self.attn_mask + torch.cuda.empty_cache() + self.attn_mask = attn_mask + self.use_cfattn = True + else: + if self.attn_mask: + self.use_cfattn = True + else: + print("Warning: no valid cross-frame attention parameters available!") + self.disable_cfattn() + + def disable_interattn(self): + self.use_interattn = False + + # temporal-guided attention + def enable_interattn(self, interattn_paras=None): + if interattn_paras: + if self.interattn_paras: + del self.interattn_paras + torch.cuda.empty_cache() + self.interattn_paras = interattn_paras + self.use_interattn = True + else: + if self.interattn_paras: + self.use_interattn = True + else: + print("Warning: no valid temporal-guided attention parameters available!") + self.disable_interattn() + + def disable_controller(self): + self.disable_intraattn() + self.disable_interattn() + self.disable_cfattn() + + def enable_controller(self, interattn_paras=None, attn_mask=None): + self.enable_intraattn() + self.enable_interattn(interattn_paras) + self.enable_cfattn(attn_mask) + + def forward(self, context): + if self.store: + self.stored_attn["decoder_attn"].append(context.detach()) + if self.use_intraattn and len(self.stored_attn["decoder_attn"]) > 0: + tmp = self.stored_attn["decoder_attn"][self.index] + self.index = self.index + 1 + if self.index >= len(self.stored_attn["decoder_attn"]): + self.index = 0 + self.disable_store() + return tmp + return context + + def __call__(self, context): + context = self.forward(context) + return context + + +class FRESCOAttnProcessor2_0: + """ + Hack self attention to FRESCO-based attention + * adding spatial-guided attention + * adding temporal-guided attention + * adding cross-frame attention + + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + Usage + frescoProc = FRESCOAttnProcessor2_0(2, attn_mask) + attnProc = AttnProcessor2_0() + + attn_processor_dict = {} + for k in pipe.unet.attn_processors.keys(): + if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): + attn_processor_dict[k] = frescoProc + else: + attn_processor_dict[k] = attnProc + pipe.unet.set_attn_processor(attn_processor_dict) + """ + + def __init__(self, unet_chunk_size=2, controller=None): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + self.unet_chunk_size = unet_chunk_size + self.controller = controller + + def __call__( + self, + attn, + hidden_states, + encoder_hidden_states=None, + attention_mask=None, + temb=None, + ): + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape + ) + + if attention_mask is not None: + attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) + + query = attn.to_q(hidden_states) + + crossattn = False + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + if self.controller and self.controller.store: + self.controller(hidden_states.detach().clone()) + else: + crossattn = True + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) + + # BC * HW * 8D + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query_raw, key_raw = None, None + if self.controller and self.controller.use_interattn and (not crossattn): + query_raw, key_raw = query.clone(), key.clone() + + inner_dim = key.shape[-1] # 8D + head_dim = inner_dim // attn.heads # D + + """for efficient cross-frame attention""" + if self.controller and self.controller.use_cfattn and (not crossattn): + video_length = key.size()[0] // self.unet_chunk_size + former_frame_index = [0] * video_length + attn_mask = None + if self.controller.attn_mask is not None: + for m in self.controller.attn_mask: + if m.shape[1] == key.shape[1]: + attn_mask = m + # BC * HW * 8D --> B * C * HW * 8D + key = rearrange(key, "(b f) d c -> b f d c", f=video_length) + # B * C * HW * 8D --> B * C * HW * 8D + if attn_mask is None: + key = key[:, former_frame_index] + else: + key = repeat(key[:, attn_mask], "b d c -> b f d c", f=video_length) + # B * C * HW * 8D --> BC * HW * 8D + key = rearrange(key, "b f d c -> (b f) d c").detach() + value = rearrange(value, "(b f) d c -> b f d c", f=video_length) + if attn_mask is None: + value = value[:, former_frame_index] + else: + value = repeat(value[:, attn_mask], "b d c -> b f d c", f=video_length) + value = rearrange(value, "b f d c -> (b f) d c").detach() + + # BC * HW * 8D --> BC * HW * 8 * D --> BC * 8 * HW * D + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + # BC * 8 * HW2 * D + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + # BC * 8 * HW2 * D2 + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + """for spatial-guided intra-frame attention""" + if self.controller and self.controller.use_intraattn and (not crossattn): + ref_hidden_states = self.controller(None) + assert ref_hidden_states.shape == encoder_hidden_states.shape + query_ = attn.to_q(ref_hidden_states) + key_ = attn.to_k(ref_hidden_states) + + # BC * 8 * HW * D + query_ = query_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key_ = key_.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + query = F.scaled_dot_product_attention( + query_, + key_ * self.controller.intraattn_scale_factor, + query, + attn_mask=torch.eye(query_.size(-2), key_.size(-2), dtype=query.dtype, device=query.device) + * self.controller.intraattn_bias, + ).detach() + + del query_, key_ + torch.cuda.empty_cache() + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + # output: BC * 8 * HW * D2 + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + """for temporal-guided inter-frame attention (FLATTEN)""" + if self.controller and self.controller.use_interattn and (not crossattn): + del query, key, value + torch.cuda.empty_cache() + bwd_mapping = None + fwd_mapping = None + for i, f in enumerate(self.controller.interattn_paras["fwd_mappings"]): + if f.shape[2] == hidden_states.shape[2]: + fwd_mapping = f + bwd_mapping = self.controller.interattn_paras["bwd_mappings"][i] + interattn_mask = self.controller.interattn_paras["interattn_masks"][i] + video_length = key_raw.size()[0] // self.unet_chunk_size + # BC * HW * 8D --> C * 8BD * HW + key = rearrange(key_raw, "(b f) d c -> f (b c) d", f=video_length) + query = rearrange(query_raw, "(b f) d c -> f (b c) d", f=video_length) + # BC * 8 * HW * D --> C * 8BD * HW + # key = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ######## + # query = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) ####### + + value = rearrange(hidden_states, "(b f) h d c -> f (b h c) d", f=video_length) + key = torch.gather(key, 2, fwd_mapping.expand(-1, key.shape[1], -1)) + query = torch.gather(query, 2, fwd_mapping.expand(-1, query.shape[1], -1)) + value = torch.gather(value, 2, fwd_mapping.expand(-1, value.shape[1], -1)) + # C * 8BD * HW --> BHW, C, 8D + key = rearrange(key, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + query = rearrange(query, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + value = rearrange(value, "f (b c) d -> (b d) f c", b=self.unet_chunk_size) + # BHW * C * 8D --> BHW * C * 8 * D--> BHW * 8 * C * D + query = query.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + key = key.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + value = value.view(-1, video_length, attn.heads, head_dim).transpose(1, 2).detach() + hidden_states_ = F.scaled_dot_product_attention( + query, + key * self.controller.interattn_scale_factor, + value, + # .to(query.dtype)-1.0) * 1e6 - + attn_mask=(interattn_mask.repeat(self.unet_chunk_size, 1, 1, 1)), + # torch.eye(interattn_mask.shape[2]).to(query.device).to(query.dtype) * 1e4, + ) + + # BHW * 8 * C * D --> C * 8BD * HW + hidden_states_ = rearrange(hidden_states_, "(b d) h f c -> f (b h c) d", b=self.unet_chunk_size) + hidden_states_ = torch.gather( + hidden_states_, 2, bwd_mapping.expand(-1, hidden_states_.shape[1], -1) + ).detach() + # C * 8BD * HW --> BC * 8 * HW * D + hidden_states = rearrange( + hidden_states_, "f (b h c) d -> (b f) h d c", b=self.unet_chunk_size, h=attn.heads + ) + + # BC * 8 * HW * D --> BC * HW * 8D + hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +def apply_FRESCO_attn(pipe): + """ + Apply FRESCO-guided attention to a StableDiffusionPipeline + """ + frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) + attnProc = AttnProcessor2_0() + attn_processor_dict = {} + for k in pipe.unet.attn_processors.keys(): + if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): + attn_processor_dict[k] = frescoProc + else: + attn_processor_dict[k] = attnProc + pipe.unet.set_attn_processor(attn_processor_dict) + return frescoProc + + +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +def prepare_image(image): + if isinstance(image, torch.Tensor): + # Batch single image + if image.ndim == 3: + image = image.unsqueeze(0) + + image = image.to(dtype=torch.float32) + else: + # preprocess image + if isinstance(image, (PIL.Image.Image, np.ndarray)): + image = [image] + + if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): + image = [np.array(i.convert("RGB"))[None, :] for i in image] + image = np.concatenate(image, axis=0) + elif isinstance(image, list) and isinstance(image[0], np.ndarray): + image = np.concatenate([i[None, :] for i in image], axis=0) + + image = image.transpose(0, 3, 1, 2) + image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 + + return image + + +class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline): + r""" + Pipeline for video-to-video translation using Stable Diffusion with FRESCO Algorithm. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + model_cpu_offload_seq = "text_encoder->unet->vae" + _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] + _exclude_from_cpu_offload = ["safety_checker"] + _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] + + def __init__( + self, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + image_encoder: CLIPVisionModelWithProjection = None, + requires_safety_checker: bool = True, + ): + super().__init__( + vae, + text_encoder, + tokenizer, + unet, + controlnet, + scheduler, + safety_checker, + feature_extractor, + image_encoder, + requires_safety_checker, + ) + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + self.register_to_config(requires_safety_checker=requires_safety_checker) + + frescoProc = FRESCOAttnProcessor2_0(2, AttentionControl()) + attnProc = AttnProcessor2_0() + attn_processor_dict = {} + for k in self.unet.attn_processors.keys(): + if k.startswith("up_blocks.2") or k.startswith("up_blocks.3"): + attn_processor_dict[k] = frescoProc + else: + attn_processor_dict[k] = attnProc + self.unet.set_attn_processor(attn_processor_dict) + self.frescoProc = frescoProc + + flow_model = GMFlow( + feature_channels=128, + num_scales=1, + upsample_factor=8, + num_head=1, + attention_type="swin", + ffn_dim_expansion=4, + num_transformer_layers=6, + ).to(self.device) + + checkpoint = torch.utils.model_zoo.load_url( + "https://huggingface.co/Anonymous-sub/Rerender/resolve/main/models/gmflow_sintel-0c07dcb3.pth", + map_location=lambda storage, loc: storage, + ) + weights = checkpoint["model"] if "model" in checkpoint else checkpoint + flow_model.load_state_dict(weights, strict=False) + flow_model.eval() + self.flow_model = flow_model + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + **kwargs, + ): + deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." + deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) + + prompt_embeds_tuple = self.encode_prompt( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=lora_scale, + **kwargs, + ) + + # concatenate for backwards comp + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, negative_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 + ) + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance + ): + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." + ) + + image_embeds = [] + for single_ip_adapter_image, image_proj_layer in zip( + ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers + ): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + single_image_embeds, single_negative_image_embeds = self.encode_image( + single_ip_adapter_image, device, 1, output_hidden_state + ) + single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) + single_negative_image_embeds = torch.stack( + [single_negative_image_embeds] * num_images_per_prompt, dim=0 + ) + + if do_classifier_free_guidance: + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) + single_image_embeds = single_image_embeds.to(device) + + image_embeds.append(single_image_embeds) + else: + repeat_dims = [1] + image_embeds = [] + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) + single_image_embeds = single_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) + ) + single_negative_image_embeds = single_negative_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) + ) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) + else: + single_image_embeds = single_image_embeds.repeat( + num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) + ) + image_embeds.append(single_image_embeds) + + return image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" + deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) + + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + image, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ip_adapter_image=None, + ip_adapter_image_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + callback_on_step_end_tensor_inputs=None, + ): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # `prompt` needs more sophisticated handling when there are multiple + # conditionings. + if isinstance(self.controlnet, MultiControlNetModel): + if isinstance(prompt, list): + logger.warning( + f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}" + " prompts. The conditionings will be fixed across the prompts." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + self.check_image(image, prompt, prompt_embeds) + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if not isinstance(image, list): + raise TypeError("For multiple controlnets: `image` must be type `list`") + + # When `image` is a nested list: + # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) + elif any(isinstance(i, list) for i in image): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif len(image) != len(self.controlnet.nets): + raise ValueError( + f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets." + ) + + for image_ in image: + self.check_image(image_, prompt, prompt_embeds) + else: + assert False + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError("A single batch of multiple conditionings are supported at the moment.") + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError( + "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." + ) + + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError( + f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" + ) + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError( + f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image + def prepare_control_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps + def get_timesteps(self, num_inference_steps, strength, device): + # get the original timestep using init_timestep + init_timestep = min(int(num_inference_steps * strength), num_inference_steps) + + t_start = max(num_inference_steps - init_timestep, 0) + timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] + if hasattr(self.scheduler, "set_begin_index"): + self.scheduler.set_begin_index(t_start * self.scheduler.order) + + return timesteps, num_inference_steps - t_start + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents + def prepare_latents( + self, image, timestep, batch_size, num_images_per_prompt, dtype, device, repeat_noise, generator=None + ): + if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): + raise ValueError( + f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" + ) + + image = image.to(device=device, dtype=dtype) + + batch_size = batch_size * num_images_per_prompt + + if image.shape[1] == 4: + init_latents = image + + else: + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + elif isinstance(generator, list): + init_latents = [ + retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) + for i in range(batch_size) + ] + init_latents = torch.cat(init_latents, dim=0) + else: + init_latents = retrieve_latents(self.vae.encode(image), generator=generator) + + init_latents = self.vae.config.scaling_factor * init_latents + + if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: + # expand init_latents for batch_size + deprecation_message = ( + f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" + " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" + " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" + " your script to pass as many initial images as text prompts to suppress this warning." + ) + deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) + additional_image_per_prompt = batch_size // init_latents.shape[0] + init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) + elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: + raise ValueError( + f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." + ) + else: + init_latents = torch.cat([init_latents], dim=0) + + shape = init_latents.shape + if repeat_noise: + noise = randn_tensor((1, *shape[1:]), generator=generator, device=device, dtype=dtype) + one_tuple = (1,) * (len(shape) - 1) + noise = noise.repeat(batch_size, *one_tuple) + else: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + + # get latents + init_latents = self.scheduler.add_noise(init_latents, noise, timestep) + latents = init_latents + + return latents + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + def __call__( + self, + prompt: Union[str, List[str]] = None, + frames: Union[List[np.ndarray], torch.FloatTensor] = None, + control_frames: Union[List[np.ndarray], torch.FloatTensor] = None, + height: Optional[int] = None, + width: Optional[int] = None, + strength: float = 0.8, + num_inference_steps: int = 50, + guidance_scale: float = 7.5, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 0.8, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + end_opt_step=15, + num_intraattn_steps=1, + step_interattn_end=350, + **kwargs, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + frames (`List[np.ndarray]` or `torch.FloatTensor`): The input images to be used as the starting point for the image generation process. + control_frames (`List[np.ndarray]` or `torch.FloatTensor`): The ControlNet input images condition to provide guidance to the `unet` for generation. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + strength (`float`, *optional*, defaults to 0.8): + Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a + starting point and more noise is added the higher the `strength`. The number of denoising steps depends + on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising + process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 + essentially ignores `image`. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should + contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + end_opt_step: + The feature optimization is activated from strength * num_inference_step to end_opt_step. + num_intraattn_steps: + Apply num_interattn_steps steps of spatial-guided attention. + step_interattn_end: + Apply temporal-guided attention in [step_interattn_end, 1000] steps + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + + callback = kwargs.pop("callback", None) + callback_steps = kwargs.pop("callback_steps", None) + + if callback is not None: + deprecate( + "callback", + "1.0.0", + "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + if callback_steps is not None: + deprecate( + "callback_steps", + "1.0.0", + "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + control_frames[0], + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ip_adapter_image, + ip_adapter_image_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + callback_on_step_end_tensor_inputs, + ) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + + # 2. Define call parameters + batch_size = len(frames) + + device = self._execution_device + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + # 3. Encode input prompt + text_encoder_lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + prompt_embeds, negative_prompt_embeds = self.encode_prompt( + prompt, + device, + num_images_per_prompt, + self.do_classifier_free_guidance, + negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=text_encoder_lora_scale, + clip_skip=self.clip_skip, + ) + prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1) + negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + self.do_classifier_free_guidance, + ) + + # 4. Prepare image + imgs_np = [] + for frame in frames: + if isinstance(frame, PIL.Image.Image): + imgs_np.append(np.asarray(frame)) + else: + # np.ndarray + imgs_np.append(frame) + images_pt = self.image_processor.preprocess(frames).to(dtype=torch.float32) + + # 5. Prepare controlnet_conditioning_image + if isinstance(controlnet, ControlNetModel): + control_image = self.prepare_control_image( + image=control_frames, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + elif isinstance(controlnet, MultiControlNetModel): + control_images = [] + + for control_image_ in control_frames: + control_image_ = self.prepare_control_image( + image=control_image_, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=controlnet.dtype, + do_classifier_free_guidance=self.do_classifier_free_guidance, + guess_mode=guess_mode, + ) + + control_images.append(control_image_) + + control_image = control_images + else: + assert False + + self.flow_model.to(device) + + flows, occs, attn_mask, interattn_paras = get_flow_and_interframe_paras(self.flow_model, imgs_np) + correlation_matrix = get_intraframe_paras(self, images_pt, self.frescoProc, prompt_embeds, generator) + + """ + Flexible settings for attention: + * Turn off FRESCO-guided attention: frescoProc.controller.disable_controller() + Then you can turn on one specific attention submodule + * Turn on Cross-frame attention: frescoProc.controller.enable_cfattn(attn_mask) + * Turn on Spatial-guided attention: frescoProc.controller.enable_intraattn() + * Turn on Temporal-guided attention: frescoProc.controller.enable_interattn(interattn_paras) + + Flexible settings for optimization: + * Turn off Spatial-guided optimization: set optimize_temporal = False in apply_FRESCO_opt() + * Turn off Temporal-guided optimization: set correlation_matrix = [] in apply_FRESCO_opt() + * Turn off FRESCO-guided optimization: disable_FRESCO_opt(pipe) + + Flexible settings for background smoothing: + * Turn off background smoothing: set saliency = None in apply_FRESCO_opt() + """ + + self.frescoProc.controller.enable_controller(interattn_paras=interattn_paras, attn_mask=attn_mask) + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps = self.scheduler.timesteps + apply_FRESCO_opt( + self, + steps=timesteps[:end_opt_step], + flows=flows, + occs=occs, + correlation_matrix=correlation_matrix, + saliency=None, + optimize_temporal=True, + ) + + clear_cache() + + # 5. Prepare timesteps + self.scheduler.set_timesteps(num_inference_steps, device=device) + timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) + latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) + self._num_timesteps = len(timesteps) + + # 6. Prepare latent variables + latents = self.prepare_latents( + images_pt, + latent_timestep, + batch_size, + num_images_per_prompt, + prompt_embeds.dtype, + device, + generator=generator, + repeat_noise=True, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Add image embeds for IP-Adapter + added_cond_kwargs = ( + {"image_embeds": image_embeds} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None + else None + ) + + # 7.2 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if i >= num_intraattn_steps: + self.frescoProc.controller.disable_intraattn() + if t < step_interattn_end: + self.frescoProc.controller.disable_interattn() + + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # controlnet(s) inference + if guess_mode and self.do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + controlnet_cond=control_image, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + if guess_mode and self.do_classifier_free_guidance: + # Inferred ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + cross_attention_kwargs=self.cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ + 0 + ] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)