| Metric | \nMinimum | \nMean | \nMedian | \nMaximum | \n
|---|---|---|---|---|
| F1 | \n0.06 | \n0.66 | \n0.71 | \n0.97 | \n
| Accuracy | \n0.67 | \n0.86 | \n0.85 | \n0.98 | \n
| Precision | \n0.03 | \n0.62 | \n0.65 | \n0.96 | \n
| Recall | \n0.25 | \n0.75 | \n0.83 | \n0.98 | \n
| \n\nAuthor(s)\n\n | \n\n\nTitle\n\n | \n\n\nJournal\n\n | \n\n\nYear\n\n | \n
|---|---|---|---|
| \n\nBusby, and Gubler, Hawkins\n\n | \n\n\nFraming and blame attribution in populist rhetoric\n\n | \n\n\nJournal of Politics\n\n | \n\n\n2019\n\n | \n
| \n\nCard et al.\n\n | \n\n\nComputational analysis of 140 years of US political speeches reveals more positive but increasingly polarized framing of immigration\n\n | \n\n\nPNAS\n\n | \n\n\n2022\n\n | \n
| \n\nCusimano and Goodwin\n\n | \n\n\nPeople judge others to have more voluntary control over beliefs than they themselves do\n\n | \n\n\nJournal of Personality and Social Psychology\n\n | \n\n\n2020\n\n | \n
| \n\nGohdes\n\n | \n\n\nRepression Technology: Internet Accessibility and State Violence\n\n | \n\n\nAmerican Journal of Political Science\n\n | \n\n\n2020\n\n | \n
| \n\nHopkins, Lelkes, and Wolken\n\n | \n\n\nThe Rise of and Demand for Identity-Oriented Media Coverage\n\n | \n\n\nAmerican Journal of Political Science\n\n | \n\n\n2024\n\n | \n
| \n\nM\u00fcller\n\n | \n\n\nThe Temporal Focus of Campaign Communication\n\n | \n\n\nJournal of Politics\n\n | \n\n\n2021\n\n | \n
| \n\nPeng, Romero, and Horvat\n\n | \n\n\nDynamics of cross-platform attention to retracted papers\n\n | \n\n\nPNAS\n\n | \n\n\n2022\n\n | \n
| \n\nSaha et al.\n\n | \n\n\nOn the rise of fear speech in online social media\n\n | \n\n\nPNAS\n\n | \n\n\n2022\n\n | \n
| \n\nSchub\n\n | \n\n\nInforming the Leader: Bureaucracies and International Crises\n\n | \n\n\nAmerican Political Science Review\n\n | \n\n\n2022\n\n | \n
| \n\nWojcieszak et al.\n\n | \n\n\nMost users do not follow political elites on Twitter; those who do show overwhelming preferences for ideological congruity\n\n | \n\n\nScience Advances\n\n | \n\n\n2022\n\n | \n
| \n\nYu and Zhang\n\n | \n\n\nThe Impact of Social Identity Conflict on Planning Horizons\n\n | \n\n\nJournal of Personality and Social Psychology\n\n | \n\n\n2022\n\n | \n
| Study | \nAnnotation tasks | \nAnnotator(s) | \n
|---|---|---|
| \n\nBusby, Gubler, & Hawkins (2019)\n\n | \n\n\nLabel open-ended text from participants in experiment for whether they (1) attribute blame to a specific actor, (2) attribute blame to a nefarious elite actor, or (3) include a positive mention of the collective people\n\n | \n\n\nResearch assistant\n\n | \n
| \n\nCard et al. (2022)\n\n | \n\n\nLabel congressional speeches for whether they are about immigration; also label tone as (1) proimmigration, (2) antiimmigration, or (3) neutral\n\n | \n\n\nResearch assistant\n\n | \n
| \n\nCusimano & Goodwin (2020)\n\n | \n\n\nLabel open-ended text on climate change from participants in experiment for the presence of (1) generic reasoning about beliefs and (2) supporting evidence for the belief\n\n | \n\n\nResearch assistant\n\n | \n
| \n\nGohdes (2020)\n\n | \n\n\nLabel Syrian death records based on type of killing: targeted or untargeted\n\n | \n\n\nExpert\n\n | \n
| \n\nHopkins, Lelkes, & Wolken (2023)\n\n | \n\n\nLabel if news content (headline, tweet, or Facebook share blurb) references social groups defined by (1) race/ethnicity; (2) gender/sexuality; (3) politics; (4) religion\n\n | \n\n\nCrowd\n\n | \n
| \n\nM\u00fcller (2021)\n\n | \n\n\nLabel sampled sentences from political party manifestos for if the temporal direction is (1) past, (2) present, or (3) future\n\n | \n\n\nExpert\n\n | \n
| \n\nPeng, Romero, & Horvat (2022)\n\n | \n\n\nLabel tweets for whether they criticize academic papers\n\n | \n\n\nExpert\n\n | \n
| \n\nSaha et al. (2020)\n\n | \n\n\nLabel Gab posts for whether they include (1) fear speech and/or (2) hate speech\n\n | \n\n\nCrowd\n\n | \n
| \n\nSchub (2020)\n\n | \n\n\nLabel texts from Cold War crises as political or military\n\n | \n\n\nExpert\n\n | \n
| \n\nWojcieszak et al. (2022)\n\n | \n\n\nLabel a quote tweet as (1) negative, (2) neutral or (3) positive toward the message and/or the political actor being quoted, independently of the tone of the original message\n\n | \n\n\nExpert\n\n | \n
| \n\nYu & Zhang (2023)\n\n | \n\n\nLabel open-ended text about plans for the future from participants in experiment for whether they are about the (1) proximate future or (2) distant future\n\n | \n\n\nResearch assistant\n\n | \n
| \n\nStudy\n\n | \n\n\nTask\n\n | \n\n\nHyperparameters\n\n | \n
|---|---|---|
| \n\nBusby\n\n | \n\n\nClassify specific blame\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nClassify elite blame\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n|
| \n\nClassify collective positive\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n|
| \n\nCusimano et al.\n\n | \n\n\nClassify generic belief\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nClassify evidence belief\n\n | \n\n\nlearning rate (2e-05), batch size (16), epochs (2)\n\n | \n|
| \n\nCard et al.\n\n | \n\n\nClassify immigration speeches\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n
| \n\nClassify pro-immigration speeches\n\n | \n\n\nlearning rate (5e-05), batch size (16), epochs (6)\n\n | \n|
| \n\nClassify anti-immigration speeches\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n|
| \n\nClassify neutral immigration speeches\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n|
| \n\nGohdes\n\n | \n\n\nClassify targeted killings\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n
| \n\nClassify untargeted killings\n\n | \n\n\nlearning rate (5e-05), batch size (16), epochs (6)\n\n | \n|
| \n\nHopkins et al.\n\n | \n\n\nClassify race/ethnicity\n\n | \n\n\nlearning rate (2e-05), batch size (8), epochs (4)\n\n | \n
| \n\nClassify gender\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n|
| \n\nClassify political groups\n\n | \n\n\nlearning rate (5e-05), batch size (16), epochs (6)\n\n | \n|
| \n\nClassify religious groups\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n|
| \n\nM\u00fcller\n\n | \n\n\nClassify past\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n
| \n\nClassify present\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n|
| \n\nClassify future\n\n | \n\n\nlearning rate (2e-05), batch size (8), epochs (6)\n\n | \n|
| \n\nPeng et al.\n\n | \n\n\nClassify criticism\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nSaha et al.\n\n | \n\n\nClassify fear speech\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nClassify hate speech\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (4)\n\n | \n|
| \n\nSchub\n\n | \n\n\nClassify political or military text\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nWojcieszak et al.\n\n | \n\n\nClassify positive\n\n | \n\n\nlearning rate (2e-05), batch size (8), epochs (6)\n\n | \n
| \n\nClassify negative\n\n | \n\n\nlearning rate (5e-05), batch size (16), epochs (6)\n\n | \n|
| \n\nClassify neutral\n\n | \n\n\nlearning rate (2e-05), batch size (8), epochs (2)\n\n | \n|
| \n\nYu et al.\n\n | \n\n\nClassify proximate future\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n\nClassify distant future\n\n | \n\n\nlearning rate (5e-05), batch size (8), epochs (6)\n\n | \n
| \n | \n\nBERT-base\n\n | \n
|---|---|
| \n\n# parameters\n\n | \n\n\n110m\n\n | \n
| \n\n# attention heads\n\n | \n\n\n12\n\n | \n
| \n\nHidden dim.\n\n | \n\n\n768\n\n | \n
| \n\nFeedforward dim.\n\n | \n\n\n3072\n\n | \n
| \n\nActivation\n\n | \n\n\nGELU\n\n | \n
| \n\nDropout\n\n | \n\n\n0.1 1\n\n | \n
| \n\nOptimizer\n\n | \n\n\nAdam\n\n | \n
| \n\nWeight decay\n\n | \n\n\n0.01\n\n | \n