import datasets _DESCRIPTION = """\ Train, validation and test splits for TED talks as in http://phontron.com/data/ted_talks.tar.gz (detokenized) """ _CITATION = """\ @inproceedings{Ye2018WordEmbeddings, author = {Ye, Qi and Devendra, Sachan and Matthieu, Felix and Sarguna, Padmanabhan and Graham, Neubig}, title = {When and Why are pre-trained word embeddings useful for Neural Machine Translation}, booktitle = {HLT-NAACL}, year = {2018}, } """ _DATA_URL = "data/TED.tar" _LANGUAGES = ["ar", "az", "be", "bg", "bn", "bs", "cs", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fr-ca", "gl", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "kk", "ko", "ku", "lt", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "pt-br", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "ta", "th", "tr", "uk", "ur", "vi", "zh", "zh-cn", "zh-tw"] class TedTalksConfig(datasets.BuilderConfig): """BuilderConfig for TED talk dataset.""" def __init__(self, language_pair=(None, None), **kwargs): self.language_pair = language_pair self.source, self.target = self.language_pair[0], self.language_pair[1] name = f"{self.source}_{self.target}" description = f"Parallel sentences in `{self.source}` and `{self.target}`." super(TedTalksConfig, self).__init__(name=name, description=description, **kwargs) class TedTalks(datasets.GeneratorBasedBuilder): """TED talk data from http://phontron.com/data/ted_talks.tar.gz.""" unique_pairs = [ "_".join([l1, l2]) for l1 in _LANGUAGES for l2 in _LANGUAGES if l1 != l2 ] BUILDER_CONFIGS = [ TedTalksConfig( language_pair=(pair.split("_")[0], pair.split("_")[1]), version=datasets.Version("1.0.0", ""), ) for pair in unique_pairs ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { self.config.source: datasets.features.Value("string"), self.config.target: datasets.features.Value("string"), } ), homepage="https://github.com/neulab/word-embeddings-for-nmt", citation=_CITATION, ) def _split_generators(self, dl_manager): archive = dl_manager.download(_DATA_URL) def _get_overlap(source_file, target_file): for path, f in dl_manager.iter_archive(archive): if path == source_file: source_sentences = f.read().decode("utf-8").split("\n") elif path == target_file: target_sentences = f.read().decode("utf-8").split("\n") return len([ (src, tgt) for src, tgt in zip(source_sentences, target_sentences) if src != "" and tgt != "" ]) split2tedsplit = {"train": "train", "validation": "dev", "test": "test"} overlap = { split: _get_overlap( f"{split}/ted.{split2tedsplit[split]}.{self.config.source}", f"{split}/ted.{split2tedsplit[split]}.{self.config.target}" ) for split in ["train", "validation", "test"] } generators = [] if overlap["train"] > 0: generators.append( datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "source_file": f"train/ted.train.{self.config.source}", "target_file": f"train/ted.train.{self.config.target}", "files": dl_manager.iter_archive(archive), }, ), ) if overlap["validation"] > 0: generators.append( datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "source_file": f"validation/ted.dev.{self.config.source}", "target_file": f"validation/ted.dev.{self.config.target}", "files": dl_manager.iter_archive(archive), }, ), ) if overlap["test"] > 0: generators.append( datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "source_file": f"test/ted.test.{self.config.source}", "target_file": f"test/ted.test.{self.config.target}", "files": dl_manager.iter_archive(archive), }, ), ) return generators def _generate_examples(self, source_file, target_file, files): """Returns examples as raw text.""" source_sentences, target_sentences = None, None for path, f in files: if path == source_file: source_sentences = f.read().decode("utf-8").split("\n") elif path == target_file: target_sentences = f.read().decode("utf-8").split("\n") assert len(target_sentences) == len(source_sentences), ( f"Sizes do not match: {len(source_sentences)} vs {len(target_sentences)}." ) # ignore empty source_target_pairs = [ (src, tgt) for src, tgt in zip(source_sentences, target_sentences) if src != "" and tgt != "" ] if len(source_target_pairs) > 0: source_sentences, target_sentences = zip(*source_target_pairs) for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)): yield idx, {self.config.source: l1, self.config.target: l2}