import torch from models.networks.base_network import BaseNetwork from models.networks.loss import * from models.networks.discriminator import * from models.networks.generator import * from models.networks.encoder import * import util.util as util def find_network_using_name(target_network_name, filename): target_class_name = target_network_name + filename module_name = 'models.networks.' + filename network = util.find_class_in_module(target_class_name, module_name) assert issubclass(network, BaseNetwork), \ "Class %s should be a subclass of BaseNetwork" % network return network def modify_commandline_options(parser, is_train): opt, _ = parser.parse_known_args() netG_cls = find_network_using_name(opt.netG, 'generator') parser = netG_cls.modify_commandline_options(parser, is_train) if is_train: netD_cls = find_network_using_name(opt.netD, 'discriminator') parser = netD_cls.modify_commandline_options(parser, is_train) netE_cls = find_network_using_name('conv', 'encoder') parser = netE_cls.modify_commandline_options(parser, is_train) return parser def create_network(cls, opt): net = cls(opt) net.print_network() if len(opt.gpu_ids) > 0: assert(torch.cuda.is_available()) net.cuda() net.init_weights(opt.init_type, opt.init_variance) return net def define_G(opt): netG_cls = find_network_using_name(opt.netG, 'generator') return create_network(netG_cls, opt) def define_D(opt): netD_cls = find_network_using_name(opt.netD, 'discriminator') return create_network(netD_cls, opt) def define_E(opt): # there exists only one encoder type netE_cls = find_network_using_name('conv', 'encoder') return create_network(netE_cls, opt)