import numpy as np from torch.utils import data def InfiniteSampler(n): # i = 0 i = n - 1 order = np.random.permutation(n) while True: yield order[i] i += 1 if i >= n: np.random.seed() order = np.random.permutation(n) i = 0 class InfiniteSamplerWrapper(data.sampler.Sampler): def __init__(self, data_source): self.num_samples = len(data_source) def __iter__(self): return iter(InfiniteSampler(self.num_samples)) def __len__(self): return 2 ** 31