from data.base_dataset import BaseDataset, get_params, get_transform from PIL import Image import util.util as util import os class Pix2pixDataset(BaseDataset): @staticmethod def modify_commandline_options(parser, is_train): parser.add_argument('--no_pairing_check', action='store_true', help='If specified, skip sanity check of correct label-image file pairing') return parser def initialize(self, opt): self.opt = opt label_paths, image_paths, instance_paths = self.get_paths(opt) util.natural_sort(label_paths) util.natural_sort(image_paths) if not opt.no_instance: util.natural_sort(instance_paths) label_paths = label_paths[:opt.max_dataset_size] image_paths = image_paths[:opt.max_dataset_size] instance_paths = instance_paths[:opt.max_dataset_size] if not opt.no_pairing_check: for path1, path2 in zip(label_paths, image_paths): assert self.paths_match(path1, path2), \ "The label-image pair (%s, %s) do not look like the right pair because the filenames are quite different. Are you sure about the pairing? Please see data/pix2pix_dataset.py to see what is going on, and use --no_pairing_check to bypass this." % (path1, path2) self.label_paths = label_paths self.image_paths = image_paths self.instance_paths = instance_paths size = len(self.label_paths) self.dataset_size = size def get_paths(self, opt): label_paths = [] image_paths = [] instance_paths = [] assert False, "A subclass of Pix2pixDataset must override self.get_paths(self, opt)" return label_paths, image_paths, instance_paths def paths_match(self, path1, path2): filename1_without_ext = os.path.splitext(os.path.basename(path1))[0] filename2_without_ext = os.path.splitext(os.path.basename(path2))[0] return filename1_without_ext == filename2_without_ext def __getitem__(self, index): # Label (Content) Image label_path = self.label_paths[index] label = Image.open(label_path) if self.opt.task != 'SIS': label = label.convert('RGB') params = get_params(self.opt, label.size) if self.opt.task != 'SIS': transform_label = get_transform(self.opt, params) label_tensor = transform_label(label) else: transform_label = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) label_tensor = transform_label(label) * 255.0 label_tensor[label_tensor == 255] = self.opt.label_nc # 'unknown' is opt.label_nc # Real (Style) Image image_path = self.image_paths[index] print("Images_path",image_path) assert self.paths_match(label_path, image_path), \ "The label_path %s and image_path %s don't match." % \ (label_path, image_path) image = Image.open(image_path) image = image.convert('RGB') transform_image = get_transform(self.opt, params) image_tensor = transform_image(image) # if using instance maps if self.opt.no_instance: instance_tensor = 0 else: instance_path = self.instance_paths[index] instance = Image.open(instance_path) if instance.mode == 'L': instance_tensor = transform_label(instance) * 255 instance_tensor = instance_tensor.long() else: instance_tensor = transform_label(instance) input_dict = {'label': label_tensor, 'instance': instance_tensor, 'image': image_tensor, 'path': image_path, 'cpath': label_path } # Give subclasses a chance to modify the final output len_dict=len(input_dict['label']) print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",len_dict) self.postprocess(input_dict) return input_dict def postprocess(self, input_dict): return input_dict def __len__(self): return self.dataset_size