import os from PIL import Image import torch from torch.utils.data import Dataset from torchvision import transforms import numpy as np def test_transform(size, crop): transform_list = [] if size != 0: transform_list.append(transforms.Resize(size)) if crop: transform_list.append(transforms.CenterCrop(size)) transform_list.append(transforms.ToTensor()) transform = transforms.Compose(transform_list) return transform def style_transform(h, w): k = (h, w) size = int(np.max(k)) print(type(size)) transform_list = [] transform_list.append(transforms.CenterCrop((h, w))) transform_list.append(transforms.ToTensor()) transform = transforms.Compose(transform_list) return transform def content_transform(): transform_list = [] transform_list.append(transforms.Resize(256)) # Thay đổi kích thước trước transform_list.append(transforms.ToTensor()) # Sau đó chuyển đổi thành tensor transform = transforms.Compose(transform_list) return transform # Trả về một đối tượng biến đổi class Summer2YosemiteDataset(Dataset): def __init__(self, content_dir, style_dir, transform=None): self.content_dir = content_dir self.style_dir = style_dir self.transform = transform self.content_images = sorted([os.path.join(content_dir, img) for img in os.listdir(content_dir)]) self.style_images = sorted([os.path.join(style_dir, img) for img in os.listdir(style_dir)]) def __len__(self): return min(len(self.content_images), len(self.style_images)) def __getitem__(self, index): content_path = self.content_images[index] style_path = self.style_images[index] # Load và áp dụng các biến đổi ảnh content_image = Image.open(content_path).convert("RGB") style_image = Image.open(style_path).convert("RGB") if self.transform: content_image = self.transform(content_image) style_image = self.transform(style_image) return {'label': content_image, 'image': style_image,'cpath': content_path}