""" Adafactor (Big Vision variant) for PyTorch Adapted from the implementation in big vision: https://github.com/google-research/big_vision Described in 'Scaling Vision Transformers': https://arxiv.org/abs/2106.04560 Adaptation and PyTorch modifications by Ross Wightman """ from typing import List, Optional, Tuple, Union import torch from torch import Tensor from torch.optim import Optimizer from ._types import ParamsT def _get_scalar_dtype(): """Get the scalar dtype that the optimizer uses for state""" return torch.float64 def _factored_dims( shape: Tuple[int, ...], factored: bool, min_dim_size_to_factor: int ) -> Optional[tuple[int, int]]: """Whether to use a factored second moment estimator. This function returns a tuple with the two largest axes to reduce over. If no two dimensions have size >= min_dim_size_to_factor, return None. Args: shape: an input shape factored: whether to use factored second-moment estimator for > 2d vars. min_dim_size_to_factor: only factor accumulator if two array dimensions have at least this size. Returns: None or a tuple of ints """ if not factored or len(shape) < 2: return None sorted_dims = sorted(((x, i) for i, x in enumerate(shape))) if shape[sorted_dims[-2][1]] < min_dim_size_to_factor: return None return int(sorted_dims[-2][1]), int(sorted_dims[-1][1]) class AdafactorBigVision(Optimizer): """ PyTorch implementation of BigVision's Adafactor variant with both single and multi tensor implementations. Adapted from https://github.com/google-research/big_vision by Ross Wightman """ def __init__( self, params: ParamsT, lr: float = 1.0, min_dim_size_to_factor: int = 16, decay_rate: float = 0.8, decay_offset: int = 0, beta2_cap: float = 0.999, momentum: Optional[float] = 0.9, momentum_dtype: Union[str, torch.dtype] = torch.bfloat16, eps: Optional[float] = None, weight_decay: float = 0.0, clipping_threshold: Optional[float] = None, unscaled_wd: bool = False, caution: bool = False, *, foreach: Optional[bool] = False, ): if isinstance(momentum_dtype, str): if momentum_dtype == 'float16': momentum_dtype = torch.float16 elif momentum_dtype == 'bfloat16': momentum_dtype = torch.bfloat16 else: assert momentum_dtype == 'float32', f'{momentum_dtype} dtype not supported' momentum_dtype = torch.float32 # FIXME try to check if momentum dtype is appropriate for device? Torch API not great for this. defaults = dict( lr=lr, min_dim_size_to_factor=min_dim_size_to_factor, decay_rate=decay_rate, decay_offset=decay_offset, beta2_cap=beta2_cap, momentum=momentum, momentum_dtype=momentum_dtype, eps=eps, weight_decay=weight_decay, clipping_threshold=clipping_threshold, unscaled_wd=unscaled_wd, caution=caution, foreach=foreach, ) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) for group in self.param_groups: group.setdefault('caution', False) group.setdefault('foreach', None) for p in group['params']: p_state = self.state.get(p, {}) if len(p_state) != 0 and not torch.is_tensor(p_state['step']): p_state['step'] = torch.tensor(float(p_state['step']), dtype=_get_scalar_dtype()) if 'exp_avg' in p_state and torch.is_tensor(p_state['exp_avg']): # FIXME this is a bit of a hack, optimizer.load_state_dict appears to upcast # the momentum to float32 (it's half precision in the state_dict), need to # look into this further. Better to override _process_value_according_to_param_policy? p_state['exp_avg'] = p_state['exp_avg'].to(dtype=self.defaults['momentum_dtype']) @torch.no_grad() def step(self, closure=None): loss = None if closure is not None: with torch.enable_grad(): loss = closure() for group in self.param_groups: params_with_grad = [] grads = [] exp_avg_sq_rs = [] exp_avg_sq_cs = [] exp_avg_sqs = [] state_steps = [] exp_avgs = [] # For momentum for p in group['params']: if p.grad is None: continue if p.grad.is_sparse: raise RuntimeError("Sparse gradients not supported") params_with_grad.append(p) grads.append(p.grad) state = self.state[p] if len(state) == 0: # NOTE step on CPU, probably need some more though to make capturable state['step'] = torch.tensor(0.0, dtype=_get_scalar_dtype()) shape = p.grad.shape factored_dims = _factored_dims( shape, factored=True, min_dim_size_to_factor=self.defaults['min_dim_size_to_factor'] ) if factored_dims is not None: dc, dr = factored_dims row_shape = list(p.grad.shape) row_shape[dr] = 1 col_shape = list(p.grad.shape) col_shape[dc] = 1 state['exp_avg_sq_r'] = p.grad.new_zeros(row_shape) state['exp_avg_sq_c'] = p.grad.new_zeros(col_shape) else: state['exp_avg_sq'] = torch.zeros_like(p.grad, memory_format=torch.preserve_format) if self.defaults['momentum'] is not None: state['exp_avg'] = torch.zeros_like(p.grad, dtype=self.defaults['momentum_dtype']) state_steps.append(state['step']) exp_avg_sq_rs.append(state.get('exp_avg_sq_r', None)) exp_avg_sq_cs.append(state.get('exp_avg_sq_c', None)) exp_avg_sqs.append(state.get('exp_avg_sq', None)) exp_avgs.append(state.get('exp_avg', None)) if group['foreach']: func = _multi_tensor_adafactor else: func = _single_tensor_adafactor func( params=params_with_grad, grads=grads, exp_avg_sq_rs=exp_avg_sq_rs, exp_avg_sq_cs=exp_avg_sq_cs, exp_avg_sqs=exp_avg_sqs, exp_avgs=exp_avgs, state_steps=state_steps, beta2_decay=group['decay_rate'], beta2_cap=group['beta2_cap'], min_dim_size_to_factor=group['min_dim_size_to_factor'], eps=group['eps'], lr=group['lr'], weight_decay=group['weight_decay'], momentum=group['momentum'], momentum_dtype=group['momentum_dtype'], clipping_threshold=group['clipping_threshold'], unscaled_wd=group['unscaled_wd'], caution=group['caution'], ) return loss def _single_tensor_adafactor( params: List[Tensor], grads: List[Tensor], exp_avg_sq_rs: List[Optional[Tensor]], exp_avg_sq_cs: List[Optional[Tensor]], exp_avg_sqs: List[Optional[Tensor]], exp_avgs: List[Optional[Tensor]], state_steps: List[Tensor], *, beta2_decay: float, beta2_cap: float, min_dim_size_to_factor: int, eps: float, lr: float, weight_decay: float, momentum: Optional[float], momentum_dtype: Union[str, torch.dtype], clipping_threshold: Optional[float], unscaled_wd: bool, caution: bool, ): for i, param in enumerate(params): grad = grads[i] exp_avg_sq_r = exp_avg_sq_rs[i] exp_avg_sq_c = exp_avg_sq_cs[i] exp_avg_sq = exp_avg_sqs[i] exp_avg = exp_avgs[i] step_t = state_steps[i] if eps is None: # default eps for avoiding div by zero, diff from float type eps eps = 1e-7 if grad.dtype == torch.float16 else 1e-30 # Update step step_t += 1 beta2_t = min(beta2_cap, 1.0 - float(step_t) ** (-beta2_decay)) one_minus_beta2_t = 1 - beta2_t grad_sqr = torch.square(grad) + eps # NOTE application of eps (epsilon1) mirrors the optax/big vision/t5x approach if exp_avg_sq is None: # factorized second moment dc, dr = _factored_dims(grad.shape, True, min_dim_size_to_factor=min_dim_size_to_factor) exp_avg_sq_r.lerp_(grad_sqr.mean(dim=dr, keepdim=True), one_minus_beta2_t) exp_avg_sq_c.lerp_(grad_sqr.mean(dim=dc, keepdim=True), one_minus_beta2_t) reduce_dc = dc - 1 if dc > dr else dc row_col_mean = exp_avg_sq_r.mean(dim=reduce_dc, keepdim=True) row_factor = (exp_avg_sq_r / row_col_mean).rsqrt() col_factor = exp_avg_sq_c.rsqrt() update = grad * row_factor * col_factor else: # non-factorized second moment assert exp_avg_sq_r is None and exp_avg_sq_c is None exp_avg_sq.lerp_(grad_sqr, one_minus_beta2_t) update = grad * exp_avg_sq.rsqrt() # Clip by RMS value if clipping_threshold is not None: denom = (update.norm(2) / ((update.numel() ** 0.5) / clipping_threshold)).clamp_(max=1.0) update.div_(denom) # Apply momentum (in different dtype) if momentum is not None and exp_avg is not None: if momentum_dtype != grad.dtype: exp_avg.lerp_(update.to(momentum_dtype), 1 - momentum) # ema update = exp_avg.to(grad.dtype) else: exp_avg.lerp_(update, 1 - momentum) # ema update = exp_avg.clone() if caution: # apply caution as per 'Cautious Optimizers': https://arxiv.org/abs/2411.16085 mask = (update * grad > 0).to(grad.dtype) mask.div_(mask.mean().clamp_(min=1e-3)) update.mul_(mask) # Scale by learning rate update.mul_(lr) # Perform weight decay if weight_decay != 0: if unscaled_wd: # match big vision impl, 'fully decoupled' decay w/o LR scaling param.mul_(1. - weight_decay) else: # match typical pytorch behaviour for decoupled decay, eg adamw where wd is scaled by LR param.mul_(1. - lr * weight_decay) # Update parameters param.add_(update, alpha=-1.0) def _multi_tensor_adafactor( params: List[Tensor], grads: List[Tensor], exp_avg_sq_rs: List[Optional[Tensor]], exp_avg_sq_cs: List[Optional[Tensor]], exp_avg_sqs: List[Optional[Tensor]], exp_avgs: List[Optional[Tensor]], state_steps: List[Tensor], *, beta2_decay: float, beta2_cap: float, min_dim_size_to_factor: int, eps: float, lr: float, weight_decay: float, momentum: Optional[float], momentum_dtype: Union[str, torch.dtype], clipping_threshold: Optional[float], unscaled_wd: bool, caution: bool, ): # FIXME TODO assert False, 'multi-tensor fn (foreach=True) not implemented yet'