from torch.nn.modules.batchnorm import BatchNorm2d from torchvision.ops.misc import FrozenBatchNorm2d import timm import pytest from timm.utils.model import freeze, unfreeze from timm.utils.model import ActivationStatsHook from timm.utils.model import extract_spp_stats from timm.utils.model import _freeze_unfreeze from timm.utils.model import avg_sq_ch_mean, avg_ch_var, avg_ch_var_residual from timm.utils.model import reparameterize_model from timm.utils.model import get_state_dict def test_freeze_unfreeze(): model = timm.create_model('resnet18') # Freeze all freeze(model) # Check top level module assert model.fc.weight.requires_grad == False # Check submodule assert model.layer1[0].conv1.weight.requires_grad == False # Check BN assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) # Unfreeze all unfreeze(model) # Check top level module assert model.fc.weight.requires_grad == True # Check submodule assert model.layer1[0].conv1.weight.requires_grad == True # Check BN assert isinstance(model.layer1[0].bn1, BatchNorm2d) # Freeze some freeze(model, ['layer1', 'layer2.0']) # Check frozen assert model.layer1[0].conv1.weight.requires_grad == False assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) assert model.layer2[0].conv1.weight.requires_grad == False # Check not frozen assert model.layer3[0].conv1.weight.requires_grad == True assert isinstance(model.layer3[0].bn1, BatchNorm2d) assert model.layer2[1].conv1.weight.requires_grad == True # Unfreeze some unfreeze(model, ['layer1', 'layer2.0']) # Check not frozen assert model.layer1[0].conv1.weight.requires_grad == True assert isinstance(model.layer1[0].bn1, BatchNorm2d) assert model.layer2[0].conv1.weight.requires_grad == True # Freeze/unfreeze BN # From root freeze(model, ['layer1.0.bn1']) assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) unfreeze(model, ['layer1.0.bn1']) assert isinstance(model.layer1[0].bn1, BatchNorm2d) # From direct parent freeze(model.layer1[0], ['bn1']) assert isinstance(model.layer1[0].bn1, FrozenBatchNorm2d) unfreeze(model.layer1[0], ['bn1']) assert isinstance(model.layer1[0].bn1, BatchNorm2d) def test_activation_stats_hook_validation(): model = timm.create_model('resnet18') def test_hook(model, input, output): return output.mean().item() # Test error case with mismatched lengths with pytest.raises(ValueError, match="Please provide `hook_fns` for each `hook_fn_locs`"): ActivationStatsHook( model, hook_fn_locs=['layer1.0.conv1', 'layer1.0.conv2'], hook_fns=[test_hook] ) def test_extract_spp_stats(): model = timm.create_model('resnet18') def test_hook(model, input, output): return output.mean().item() stats = extract_spp_stats( model, hook_fn_locs=['layer1.0.conv1'], hook_fns=[test_hook], input_shape=[2, 3, 32, 32] ) assert isinstance(stats, dict) assert test_hook.__name__ in stats assert isinstance(stats[test_hook.__name__], list) assert len(stats[test_hook.__name__]) > 0 def test_freeze_unfreeze_bn_root(): import torch.nn as nn from timm.layers import BatchNormAct2d # Create batch norm layers bn = nn.BatchNorm2d(10) bn_act = BatchNormAct2d(10) # Test with BatchNorm2d as root with pytest.raises(AssertionError): _freeze_unfreeze(bn, mode="freeze") # Test with BatchNormAct2d as root with pytest.raises(AssertionError): _freeze_unfreeze(bn_act, mode="freeze") def test_activation_stats_functions(): import torch # Create sample input tensor [batch, channels, height, width] x = torch.randn(2, 3, 4, 4) # Test avg_sq_ch_mean result1 = avg_sq_ch_mean(None, None, x) assert isinstance(result1, float) # Test avg_ch_var result2 = avg_ch_var(None, None, x) assert isinstance(result2, float) # Test avg_ch_var_residual result3 = avg_ch_var_residual(None, None, x) assert isinstance(result3, float) def test_reparameterize_model(): import torch.nn as nn class FusableModule(nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, 3, 1) def fuse(self): return nn.Identity() class ModelWithFusable(nn.Module): def __init__(self): super().__init__() self.fusable = FusableModule() self.normal = nn.Linear(10, 10) model = ModelWithFusable() # Test with inplace=False (should create a copy) new_model = reparameterize_model(model, inplace=False) assert isinstance(new_model.fusable, nn.Identity) assert isinstance(model.fusable, FusableModule) # Original unchanged # Test with inplace=True reparameterize_model(model, inplace=True) assert isinstance(model.fusable, nn.Identity) def test_get_state_dict_custom_unwrap(): import torch.nn as nn class CustomModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(10, 10) model = CustomModel() def custom_unwrap(m): return m state_dict = get_state_dict(model, unwrap_fn=custom_unwrap) assert 'linear.weight' in state_dict assert 'linear.bias' in state_dict def test_freeze_unfreeze_string_input(): model = timm.create_model('resnet18') # Test with string input _freeze_unfreeze(model, 'layer1', mode='freeze') assert model.layer1[0].conv1.weight.requires_grad == False # Test unfreezing with string input _freeze_unfreeze(model, 'layer1', mode='unfreeze') assert model.layer1[0].conv1.weight.requires_grad == True