""" Optimzier Tests These tests were adapted from PyTorch' optimizer tests. """ import functools import importlib import os from copy import deepcopy import pytest import torch from torch.nn import Parameter from torch.testing._internal.common_utils import TestCase from timm.optim import create_optimizer_v2, list_optimizers, get_optimizer_class, get_optimizer_info, OptimInfo from timm.optim import param_groups_layer_decay, param_groups_weight_decay from timm.scheduler import PlateauLRScheduler torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cuda') # HACK relying on internal PyTorch test functionality for comparisons that I don't want to write torch_tc = TestCase() def _test_basic_cases_template(weight, bias, input, constructor, scheduler_constructors): weight = Parameter(weight) bias = Parameter(bias) input = Parameter(input) optimizer = constructor(weight, bias) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) # to check if the optimizer can be printed as a string optimizer.__repr__() def fn(): optimizer.zero_grad() y = weight.mv(input) if y.is_cuda and bias.is_cuda and y.get_device() != bias.get_device(): y = y.cuda(bias.get_device()) loss = (y + bias).pow(2).sum() loss.backward() return loss initial_value = fn().item() for _i in range(200): for scheduler in schedulers: if isinstance(scheduler, PlateauLRScheduler): val_loss = fn() scheduler.step(val_loss) else: scheduler.step() optimizer.step(fn) assert fn().item() < initial_value def _test_state_dict(weight, bias, input, constructor): weight = Parameter(weight) bias = Parameter(bias) input = Parameter(input) def fn_base(optimizer, weight, bias): optimizer.zero_grad() i = input_device if weight.device.type != 'cpu' else input loss = (weight.mv(i) + bias).pow(2).sum() loss.backward() return loss optimizer = constructor(weight, bias) fn = functools.partial(fn_base, optimizer, weight, bias) # Prime the optimizer for _i in range(20): optimizer.step(fn) # Clone the weights and construct new optimizer for them with torch.no_grad(): weight_c = Parameter(weight.clone().detach()) bias_c = Parameter(bias.clone().detach()) optimizer_c = constructor(weight_c, bias_c) fn_c = functools.partial(fn_base, optimizer_c, weight_c, bias_c) # Load state dict state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_c.load_state_dict(state_dict_c) # Run both optimizations in parallel for _i in range(20): optimizer.step(fn) optimizer_c.step(fn_c) torch_tc.assertEqual(weight, weight_c) torch_tc.assertEqual(bias, bias_c) # Make sure state dict is deterministic with equal but not identical parameters torch_tc.assertEqual(optimizer.state_dict(), optimizer_c.state_dict()) # Make sure repeated parameters have identical representation in state dict optimizer_c.param_groups.extend(optimizer_c.param_groups) torch_tc.assertEqual(optimizer.state_dict()['param_groups'][-1], optimizer_c.state_dict()['param_groups'][-1]) # Check that state dict can be loaded even when we cast parameters # to a different type and move to a different device. if torch_device == 'cpu': return elif torch_device == 'cuda' and not torch.cuda.is_available(): return with torch.no_grad(): input_device = Parameter(input.clone().detach().float().to(torch_device)) weight_device = Parameter(weight.clone().detach().to(torch_device)) bias_device = Parameter(bias.clone().detach().to(torch_device)) optimizer_device = constructor(weight_device, bias_device) fn_device = functools.partial(fn_base, optimizer_device, weight_device, bias_device) state_dict = deepcopy(optimizer.state_dict()) state_dict_c = deepcopy(optimizer.state_dict()) optimizer_device.load_state_dict(state_dict_c) # Make sure state dict wasn't modified torch_tc.assertEqual(state_dict, state_dict_c) for _i in range(20): optimizer.step(fn) optimizer_device.step(fn_device) torch_tc.assertEqual(weight, weight_device) torch_tc.assertEqual(bias, bias_device) # validate deepcopy() copies all public attributes def getPublicAttr(obj): return set(k for k in obj.__dict__ if not k.startswith('_')) assert getPublicAttr(optimizer) == getPublicAttr(deepcopy(optimizer)) def _test_basic_cases(constructor, scheduler_constructors=None): if scheduler_constructors is None: scheduler_constructors = [] _test_state_dict( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor ) _test_basic_cases_template( torch.randn(10, 5), torch.randn(10), torch.randn(5), constructor, scheduler_constructors ) # non-contiguous parameters _test_basic_cases_template( torch.randn(10, 5, 2)[..., 0], torch.randn(10, 2)[..., 0], torch.randn(5), constructor, scheduler_constructors ) # CUDA if torch_device == 'cpu': return elif torch_device == 'cuda' and not torch.cuda.is_available(): return _test_basic_cases_template( torch.randn(10, 5).to(torch_device), torch.randn(10).to(torch_device), torch.randn(5).to(torch_device), constructor, scheduler_constructors ) def _test_model(optimizer, params, device=torch.device('cpu'), after_step=0): weight = torch.tensor( [[-0.2109, -0.4976], [-0.1413, -0.3420], [-0.2524, 0.6976]], device=device, requires_grad=True) bias = torch.tensor([-0.1085, -0.2979, 0.6892], device=device, requires_grad=True) weight2 = torch.tensor([[-0.0508, -0.3941, -0.2843]], device=device, requires_grad=True) bias2 = torch.tensor([-0.0711], device=device, requires_grad=True) input = torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5, 0.6], device=device).reshape(3, 2) model = torch.nn.Sequential(torch.nn.Linear(2, 3), torch.nn.Sigmoid(), torch.nn.Linear(3, 1), torch.nn.Sigmoid()) model.to(device) pretrained_dict = model.state_dict() pretrained_dict['0.weight'] = weight pretrained_dict['0.bias'] = bias pretrained_dict['2.weight'] = weight2 pretrained_dict['2.bias'] = bias2 model.load_state_dict(pretrained_dict) optimizer = create_optimizer_v2(model, opt=optimizer, **params) prev_loss = float('inf') for i in range(20): optimizer.zero_grad() output = model(input) loss = output.sum() loss.backward() loss = loss.item() if i > after_step: assert loss < prev_loss prev_loss = loss optimizer.step() def rosenbrock(tensor): x, y = tensor return (1 - x) ** 2 + 100 * (y - x ** 2) ** 2 def drosenbrock(tensor): x, y = tensor return torch.tensor((-400 * x * (y - x ** 2) - 2 * (1 - x), 200 * (y - x ** 2))) def _test_rosenbrock(constructor, scheduler_constructors=None): if scheduler_constructors is None: scheduler_constructors = [] params_t = torch.tensor([1.5, 1.5]) params = Parameter(params_t) optimizer = constructor([params]) schedulers = [] for scheduler_constructor in scheduler_constructors: schedulers.append(scheduler_constructor(optimizer)) solution = torch.tensor([1, 1]) initial_dist = params.clone().detach().dist(solution) def get_grad(_param, _sparse_grad, _w): grad = drosenbrock(params.clone().detach()) # Depending on w, provide only the x or y gradient if _sparse_grad: if _w: i = torch.tensor([[0, 0]], dtype=torch.int64) x = grad[0] v = torch.tensor([x / 4.0, x - x / 4.0]) else: i = torch.tensor([[1, 1]], dtype=torch.int64) y = grad[1] v = torch.tensor([y - y / 4.0, y / 4.0]) grad_out = torch.sparse_coo_tensor(i, v, (2,), dtype=v.dtype) else: if _w: grad_out = torch.tensor([grad[0], 0], dtype=_param.dtype) else: grad_out = torch.tensor([0, grad[1]], dtype=_param.dtype) return grad_out def eval(_param, _sparse_grad, _w): # Depending on w, provide only the x or y gradient optimizer.zero_grad() loss = rosenbrock(_param) loss.backward() grad_out = get_grad(_param, _sparse_grad, _w) with torch.no_grad(): _param.grad = grad_out.to_dense() return loss for i in range(2000): # Do cyclic coordinate descent w = i % 2 optimizer.step(functools.partial(eval, params, True, w)) for scheduler in schedulers: if isinstance(scheduler, PlateauLRScheduler): scheduler.step(rosenbrock(params)) else: scheduler.step() torch_tc.assertLessEqual(params.clone().detach().dist(solution), initial_dist) def _build_params_dict(weight, bias, **kwargs): return [{'params': [weight]}, dict(params=[bias], **kwargs)] def _build_params_dict_single(weight, bias, **kwargs): return [dict(params=bias, **kwargs)] @pytest.mark.parametrize('optimizer', list_optimizers(exclude_filters=('fused*', 'bnb*'))) def test_optim_factory(optimizer): assert issubclass(get_optimizer_class(optimizer, bind_defaults=False), torch.optim.Optimizer) opt_info = get_optimizer_info(optimizer) assert isinstance(opt_info, OptimInfo) lr = (1e-2,) * 4 if optimizer in ('mars', 'nadam', 'claprop', 'crmsproptf', 'cadafactorbv', 'csgdw', 'clamb'): lr = (1e-3,) * 4 elif optimizer in ('cmars',): lr = (1e-4,) * 4 try: if not opt_info.second_order: # basic tests don't support second order right now # test basic cases that don't need specific tuning via factory test _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=lr[0]) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict(weight, bias, lr=lr[1]), optimizer, lr=lr[1] / 10) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=lr[2]), optimizer, lr=lr[2] / 10) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2( _build_params_dict_single(weight, bias, lr=lr[3]), optimizer) ) except TypeError as e: if 'radamw' in optimizer: pytest.skip("Expected for 'radamw' (decoupled decay) to fail in older PyTorch versions.") else: raise e #@pytest.mark.parametrize('optimizer', ['sgd', 'momentum']) # FIXME momentum variant frequently fails in GitHub runner, but never local after many attempts @pytest.mark.parametrize('optimizer', ['sgd']) def test_sgd(optimizer): # _test_basic_cases( # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10)] # ) # _test_basic_cases( # lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3), # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="linear")] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4, warmup_method="constant")] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), # lambda opt: WarmUpLR(opt, warmup_factor=0.4, warmup_iters=4)] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.9, step_size=10), # lambda opt: ReduceLROnPlateau(opt)] # ) # _test_basic_cases( # lambda weight, bias: optimizer([weight, bias], lr=1e-3), # [lambda opt: StepLR(opt, gamma=0.99, step_size=10), # lambda opt: ExponentialLR(opt, gamma=0.99), # lambda opt: ReduceLROnPlateau(opt)] # ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1) ) _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=3e-3, momentum=1, weight_decay=.1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['adamw', 'adam', 'nadam', 'adamax', 'nadamw']) def test_adam(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['adopt', 'adoptw']) def test_adopt(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=3e-3) ) _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT @pytest.mark.parametrize('optimizer', ['adan', 'adanw']) def test_adan(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT @pytest.mark.parametrize('optimizer', ['adabelief']) def test_adabelief(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['radam', 'radabelief']) def test_rectified(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['adadelta', 'adagrad']) def test_adaother(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-1) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['adafactor', 'adafactorbv']) def test_adafactor(optimizer): _test_basic_cases( lambda weight, bias: create_optimizer_v2([weight, bias], optimizer, lr=1e-3, weight_decay=1) ) _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['lamb', 'lambc']) def test_lamb(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['laprop']) def test_laprop(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) ) _test_model(optimizer, dict(lr=1e-2)) @pytest.mark.parametrize('optimizer', ['lars', 'larc', 'nlars', 'nlarc']) def test_lars(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['madgrad', 'madgradw']) def test_madgrad(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) ) _test_model(optimizer, dict(lr=1e-2)) @pytest.mark.parametrize('optimizer', ['mars']) def test_mars(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=5e-2), after_step=1) # note no convergence in first step for ADOPT @pytest.mark.parametrize('optimizer', ['novograd']) def test_novograd(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['rmsprop', 'rmsproptf']) def test_rmsprop(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-2) ) _test_model(optimizer, dict(lr=1e-2)) @pytest.mark.parametrize('optimizer', ['adamp']) def test_adamp(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) _test_model(optimizer, dict(lr=5e-2)) @pytest.mark.parametrize('optimizer', ['sgdp']) def test_sgdp(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) _test_model(optimizer, dict(lr=1e-3)) @pytest.mark.parametrize('optimizer', ['lookahead_sgd', 'lookahead_momentum']) def test_lookahead_sgd(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-3) ) @pytest.mark.parametrize('optimizer', ['lookahead_adamw', 'lookahead_adam']) def test_lookahead_adam(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=5e-2) ) @pytest.mark.parametrize('optimizer', ['lookahead_radam']) def test_lookahead_radam(optimizer): _test_rosenbrock( lambda params: create_optimizer_v2(params, optimizer, lr=1e-4) ) def test_param_groups_layer_decay_with_end_decay(): model = torch.nn.Sequential( torch.nn.Linear(10, 5), torch.nn.ReLU(), torch.nn.Linear(5, 2) ) param_groups = param_groups_layer_decay( model, weight_decay=0.05, layer_decay=0.75, end_layer_decay=0.5, verbose=True ) assert len(param_groups) > 0 # Verify layer scaling is applied with end decay for group in param_groups: assert 'lr_scale' in group assert group['lr_scale'] <= 1.0 assert group['lr_scale'] >= 0.5 def test_param_groups_layer_decay_with_matcher(): class ModelWithMatcher(torch.nn.Module): def __init__(self): super().__init__() self.layer1 = torch.nn.Linear(10, 5) self.layer2 = torch.nn.Linear(5, 2) def group_matcher(self, coarse=False): return lambda name: int(name.split('.')[0][-1]) model = ModelWithMatcher() param_groups = param_groups_layer_decay( model, weight_decay=0.05, layer_decay=0.75, verbose=True ) assert len(param_groups) > 0 # Verify layer scaling is applied for group in param_groups: assert 'lr_scale' in group assert 'weight_decay' in group assert len(group['params']) > 0 def test_param_groups_weight_decay(): model = torch.nn.Sequential( torch.nn.Linear(10, 5), torch.nn.ReLU(), torch.nn.Linear(5, 2) ) weight_decay = 0.01 no_weight_decay_list = ['1.weight'] param_groups = param_groups_weight_decay( model, weight_decay=weight_decay, no_weight_decay_list=no_weight_decay_list ) assert len(param_groups) == 2 assert param_groups[0]['weight_decay'] == 0.0 assert param_groups[1]['weight_decay'] == weight_decay # Verify parameters are correctly grouped no_decay_params = set(param_groups[0]['params']) decay_params = set(param_groups[1]['params']) for name, param in model.named_parameters(): if param.ndim <= 1 or name.endswith(".bias") or name in no_weight_decay_list: assert param in no_decay_params else: assert param in decay_params