import os from fastapi import FastAPI import subprocess import wandb from huggingface_hub import HfApi TOKEN = os.environ.get("DATACOMP_TOKEN") API = HfApi(token=TOKEN) wandb_api_key = os.environ.get('wandb_api_key') wandb.login(key=wandb_api_key) random_num = 10.0 subset = 'frac-1over64' experiment_name = f"datacomp/ImageNetTraining{random_num}-{subset}" app = FastAPI() @app.get("/") def start_train(): os.system("echo '#### pwd'") os.system("pwd") os.system("echo '#### ls'") os.system("ls") # Create a place to put the output. os.system("echo 'Creating results output repository in case it does not exist yet...'") try: API.create_repo(repo_id=f"{experiment_name}", repo_type="dataset",) os.system(f"echo 'Created results output repository {experiment_name}'") except: os.system("echo 'Already there; skipping.'") pass # Mark that training is happening so any refresh of the Space doesn't start training again. #space_variables = API.get_space_variables(repo_id=experiment_name) #os.system("echo 'Here are the space variables'") #for key, value in space_variables.items(): # os.system(f"echo '{key}: {value}'") #if 'STATUS' not in space_variables or space_variables['STATUS'].value != 'COMPUTING': os.system("echo 'Beginning processing.'") # API.add_space_variable(repo_id=experiment_name, key='STATUS', value='COMPUTING') # Handles CUDA OOM errors. os.system(f"export PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True") os.system("echo 'Okay, trying training.'") os.system(f"cd pytorch-image-models; ./train.sh 4 --dataset hfds/datacomp/imagenet-1k-random-{random_num}-{subset} --log-wandb --experiment {experiment_name} --model seresnet34 --sched cosine --epochs 150 --warmup-epochs 5 --lr 0.4 --reprob 0.5 --remode pixel --batch-size 256 --amp -j 4") os.system("echo 'Done'.") # Mark that we're not computing anymore # API.add_space_variable(repo_id=experiment_name, key='STATUS', value='NOT_COMPUTING') os.system("ls") # Upload output to repository os.system("echo 'trying to upload...'") API.upload_folder(folder_path="/app", repo_id=f"{experiment_name}", repo_type="dataset",) # API.pause_space(experiment_name) return {"Completed": "!"}