
Proposed transform applied to a real audio clip
from the MusicCaps dataset (left), and sample
generated from the proposed method (right). The
transform consists of companding the MDCT
coefficients of an audio signal and is resilient to
quantization while being invertible without the
need for a phase vocoder.
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Current approaches that adapt
diffusion models for audio
generation operate in the domain of
log Mel-scale magnitude
spectrograms (LMMS), a type of
lossy time-frequency
representation. Operating in this
domain provides some advantages,
but also introduces distortion and
requires a separate learned vocoder
model for conversion back to the
time domain. In this work, we use low-rank adaptation (LoRA) to fine-tune an
existing diffusion-based foundation model to generate audio using an alternative
time-frequency representation based on the modified discrete cosine transform
(MDCT) which is inspired by lossy audio compression standards such as MPEG
Layer III. We propose a simple companding transform based on a generalized
Gaussian model of sub-band audio statistics which provides (1) less round-trip
distortion, (2) less design complexity, and (3) less computational complexity
compared to LMMS+Vocoder, even when combined with 8-bit quantization for
storage. Finally, we introduce MDCT-1k, a variant of the Google music captions
dataset, based on this transform. Our code is available online[1].

The rapid development of generative models has opened up new possibilities for
audio synthesis, including generating high-fidelity music from textual
descriptions. Recently, diffusion-based generative models have shown promising
results in audio generation by operating on log Mel-scale magnitude spectrograms
(LMMS), a popular but lossy time-frequency representation. However, these
approaches introduce distortion and require an additional learned vocoder model
for conversion back to the time domain.

In this work, we propose a novel approach to diffusion-based audio generation
using an alternative time-frequency representation based on the modified discrete
cosine transform (MDCT), which is inspired by lossy audio compression standards
such as MPEG Layer III. We present a simple companding transform, leveraging a
generalized Gaussian model of sub-band audio statistics to achieve less round-trip

Abstract

Introduction

http://moco.danjacobellis.net/wiki/index.php/File:MDCT_image.png


distortion, lower design complexity, and reduced computational complexity
compared to LMMS+Vocoder-based methods. Furthermore, our the companded
MDCT representation is fairly robust to 8-bit quantization for storage. To facilitate
training and evaluation, we introduce MDCT-1k, a variant of the Google Music
Captions dataset based on our proposed transformation.

In our experiments, we demonstrate fine-tune a diffusion-based foundation model
using low-rank adaptation (LoRA) on transformed audio clips from the MusicCaps
dataset. While the round-trip distortion introduced by the proposed
transformation (including quantization) is low, we found that the quality of
generated samples to be poor. This limitation prompts the exploration of potential
future work to improve the quality of synthesized audio. Possible directions
include training the full denoising U-Net from scratch to better adapt to the MDCT
representation or modifying the Variational Autoencoder (VAE) in a latent
diffusion model to operate completely in the time domain. By focusing on these
areas, we aim to further refine our approach and ultimately generate high-quality
audio samples that closely resemble natural audio signals.

Representations that are good for lossy coding are also good representations for
generative modeling and transfer learning. For example, in[2], speech synthesis is
performed by operating on the codes produced by a standardized neural audio
codec. In this section, we provide background on time-frequency representation of
audio and explain the historical trajectory of how they have been applied to
learning and generative modeling tasks. We also compare several recent diffusion-
based generative models for audio and describe the type of datasets available for
training them.

In analyzing audio signals, especially music and speech signals which have
complex and non-stationary frequency content, operating in the joint time-
frequency domain is usually preferable. Some standard, invertible time-frequency
representations include:

1. Short-Time Fourier Transform (STFT)
2. Discrete Wavelet Transform (DWT)
3. Block Discrete Cosine Transform (DCT)
4. Modified Discrete Cosine Transform (MDCT)

Each of these methods are capable of mapping N time domain audio samples to N
time-frequency cells in O(N log⁡N ) time and each is perfectly invertible assuming
infinite precision arithmetic.
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Some notable differences among these methods are (1) the time-frequency tiling
they induce, (2) their ability to compact natural signals into a sparse
representations, and (3) the severity of blocking artifacts introduced by
quantization or thresholding. For example, the STFT results in a uniform tiling of
the time-frequency plane, while the DWT provides better frequency resolution at
lower frequencies and better time resolution at higher frequencies. The DCT
possess the ability to compact natural signals into sparse representations with
efficiency approaching the optimal Karhunen–Loève transform (KLT).

However, it is well known that block DCT transforms (such as those used in the
JPEG codec) introduce blocking artifacts. The Modified Discrete Cosine
Transform (MDCT) is an extension of the DCT that allows for partial overlap
between blocks without introducing redundancy. This results in a more efficient
representation and improved reconstruction of the original signal. MPEG Layer
III, also known as MP3, uses the MDCT as the basis for its encoding. Though most
commonly applied to audio, it has also been shown in [3] that the MDCT provides
similar benefits for image compression by reducing JPEG-like blocking artifacts.

After the initial success of convolutional neural networks (CNNs) for vision tasks
in the 2010s, there was a rush to adapt these models to audio. The log Mel-scale
magnitude spectrogram (LMMS) emerged as a the popular representation for
training CNNs since it provides some of the benefits of a DWT but in a convenient
real-valued matrix form to which 2D convolution operations can be applied.

The LMMS was not designed to be an invertible transform since the phase is
discarded, low frequencies are overly redundant, and high frequencies have
insufficient time resolution. However, for the speech recognition and classification
tasks of the time, an inverse transform was not necessary. However, when
adapting the LMMS to generative modeling, a vocoder is required for conversion
back to the time-domain audio signal, increasing the computational complexity as
well as the design complexity, while addition additional distortion. This is one
reason why early generative models for audio such as WaveNet [4] operated purely
in the time domain.

Current diffusion-based models such as [5][6], and [7] operate nearly identically to
their image-based counterpart by applying denoising steps to the LMMS
representation of audio and using a vocoder to recover time domain samples. The
vocoder can either be based on a conventional architecture, such as a Griffin-Lim
vocoder in the case of  [7], or a pretrained GAN-based learned vocoder as
in [5] and [6]. Surprisingly, even though [7] only fine-tunes an image-based model,
the quality is fairly good. However, all three approaches share similar quality

Log Mel-scale magnitude spectrogram

Diffusion based generative models for audio



issues, even when  [5]  and  [6]  train the diffusion model from scratch. The
combination of LMMS and vocoder, originally developed for speech processing,
appears to be the fundamental limitation of these models. As it does not appear to
adapt well to music or other types of audio signals.

The MusicCaps dataset, introduced in  [8], is a valuable resource for training
diffusion-based generative models for audio. MusicCaps consists of 5.5k music-
text pairs, with rich text descriptions provided by human experts. These
descriptions encompass various aspects of the audio, such as the style,
instruments, and mood, making it a suitable dataset for training models that
generate high-fidelity music from text inputs.

Low-Rank Adaptation (LoRA)  [9]  is an efficient approach for fine-tuning
foundation models, such as the approach used in  [7]. Instead of retraining all
model parameters, LoRA freezes the pre-trained model weights and introduces
trainable rank decomposition matrices into each layer. This significantly reduces
the number of trainable parameters, leading to substantial savings in memory and
computational resources. As a result, fine-tuning models with LoRA can be
performed on a single consumer GPU in just a few hours.

We propose the following approach to diffusion-based audio generation:

1. Create a time-frequency representation  of each audio sample  in the training
set using the MDCT.

2. Use the procedure outlined in [10] to estimate variance and shape parameters
 and  of a generalized gaussian distribution (GGD) for each frequency
subband across many samples from the dataset.

3. Using the estimated GGD parameters, perform companding according to the
GGD cumulative distribution function , thus approximately mapping the
distribution of  to Uniform[0,1]. Perform uniform 8-bit quantization of this result
for storage. We shall refer to the overall transformation of the audio samples
 as the output of this step, i.e,

4. Adapt a pretrained, diffusion-based foundation model by using LoRA [9] and
training on transformed audio clips  paired with text captions.

5. Perform inference of the fine-tuned model, then apply the inverse
transformation  to synthesize time domain audio waveforms. The inverse
transformation is defined as
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Estimated generalized Gaussian scale (left) and
shape (right) parameters of audio from the
MusicCaps dataset. The lowest subband index
corresponds to 0 Hz and the highest subband
index corresponds to 12kHz. The orange curves
show the values used for the transformation and
its inverse

To demonstrate the efficacy of this
transformation and its resiliency to
quantization, we implement and
extremely simple lossy audio codec
‘wav2jpeg’ which consists of
\mathcal{T} composed with a
standard JPEG encoder. The code
and audio example demonstrating the level of distortion for this codec at 21
kbits/s is available.[11]

We process over 1000 audio samples from the MusicCaps dataset using the
proposed transformation. Examples of the transformed data can be explored
online.[12]  We use the LoRA fine-tuning of a text-to image model following the
procedure of  [13]. Our justification for this approach is that the quality of audio
produced by similar fine tuning using LMMS  [7]  is not far from  [5] and  [6] which
train the entire model, including the denoising U-Net from scratch. The fine-
tuning procedure ran for 15000 steps (roughly 10 epochs) over the course of 4
hours on a single RTX 2060 GPU. An example demonstrating use of the fine-
tuned model for text-to-audio generation along with an audio sample is
available.[14]

In our experiments, we observed that the proposed transformation based on
MDCT and generalized Gaussian companding results in reasonably low round trip
distortion, but with significantly increased computational and design efficiency
compared to the LMMS+Vocoder. However, we found that the quality of the
generated audio samples was not satisfactory, indicating that there are still
limitations in our current approach. One possibility is that the fine-tuning process
using LoRA may not be sufficient for adapting the model to the new representation
effectively. Future work could explore different strategies for adapting the
foundation model to the MDCT representation. One option is to train the full
denoising U-Net from scratch, allowing the model to learn the features and
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representations that are specific to the MDCT domain. Another direction is to
modify the Variational Autoencoder (VAE) in a latent diffusion model to operate
entirely in the time domain.

In this work, we explored an alternative approach to diffusion-based audio
generation using a time-frequency representation based on the modified discrete
cosine transform (MDCT) and a simple companding transform leveraging
generalized Gaussian sub-band audio statistics. Our proposed method exhibits
reduced round-trip distortion, lower design complexity, and decreased
computational complexity compared to LMMS+Vocoder-based methods while
maintaining resilience to 8-bit quantization for storage. We also introduced the
MDCT-1k dataset, a variant of the Google Music Captions dataset, to facilitate
training and evaluation.

Our experiments demonstrated the potential of our approach, but the quality of
the generated audio samples still requires improvement. Future work could focus
on better adapting the foundation model to the MDCT representation, such as
training the full denoising U-Net from scratch or modifying the Variational
Autoencoder in a latent diffusion model to operate entirely in the time domain. By
addressing these limitations, we hope to further refine our method and ultimately
generate high-quality audio samples that closely resemble natural audio signals.
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