# File: segment-anything-2-coreml-conversion/coreml/export.py import argparse import os import enum from typing import List, Optional, Tuple import ast import torch import numpy as np from PIL import Image from PIL.Image import Resampling import coremltools as ct from coremltools.converters.mil._deployment_compatibility import AvailableTarget from coremltools import ComputeUnit from coremltools.converters.mil.mil.passes.defs.quantization import ComputePrecision from coremltools.converters.mil import register_torch_op from coremltools.converters.mil.mil import Builder as mb from sam2.sam2_image_predictor import SAM2ImagePredictor class SAM2Variant(enum.Enum): Tiny = 'tiny' Small = 'small' BasePlus = 'base-plus' Large = 'large' def fmt(self): if self == SAM2Variant.BasePlus: return 'BasePlus' return self.value.capitalize() SAM2_HW = (1024, 1024) def parse_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser: parser.add_argument('--output-dir', type=str, default='.', help='Provide location to save exported models.') parser.add_argument('--variant', type=lambda x: getattr(SAM2Variant, x), choices=[variant for variant in SAM2Variant], default=SAM2Variant.Small, help='SAM2 variant to export.') parser.add_argument('--points', type=str, help="List of 2D points, e.g., '[[10,20], [30,40]]'") parser.add_argument('--boxes', type=str, help="List of 2D bounding boxes, e.g., '[[10,20,30,40], [50,60,70,80]]'") parser.add_argument('--labels', type=str, help='List of binary labels for each points entry, denoting foreground (1) or background (0).') parser.add_argument('--min-deployment-target', type=lambda x: getattr(AvailableTarget, x), choices=[target for target in AvailableTarget], default=AvailableTarget.iOS17, help='Minimum deployment target for CoreML model.') parser.add_argument('--compute-units', type=lambda x: getattr(ComputeUnit, x), choices=[cu for cu in ComputeUnit], default=ComputeUnit.ALL, help='Which compute units to target for CoreML model.') parser.add_argument('--precision', type=lambda x: getattr(ComputePrecision, x), choices=[p for p in ComputePrecision], default=ComputePrecision.FLOAT16, help='Precision to use for quantization.') return parser @register_torch_op def upsample_bicubic2d(context, node): x = context[node.inputs[0]] output_size = context[node.inputs[1]].val scale_factor_height = output_size[0] / x.shape[2] scale_factor_width = output_size[1] / x.shape[3] align_corners = context[node.inputs[2]].val x = mb.upsample_bilinear(x=x, scale_factor_height=scale_factor_height, scale_factor_width=scale_factor_width, align_corners=align_corners, name=node.name) context.add(x) class SAM2ImageEncoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, image): (img_embedding, feats_s0, feats_s1) = self.model.encode_image_raw(image) return (img_embedding, feats_s0, feats_s1) def validate_image_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image: Image.Image): prepared_image = image.resize(SAM2_HW, Resampling.BILINEAR) predictions = model.predict({'image': prepared_image}) image = np.array(image.convert('RGB')) tch_image = ground_model._transforms(image) tch_image = tch_image[None, ...].to('cpu') (ground_embedding, ground_feats_s0, ground_feats_s1) = ground_model.encode_image_raw(tch_image) (ground_embedding, ground_feats_s0, ground_feats_s1) = (ground_embedding.numpy(), ground_feats_s0.numpy(), ground_feats_s1.numpy()) img_max_diff = np.max(np.abs(predictions['image_embedding'] - ground_embedding)) img_avg_diff = np.mean(np.abs(predictions['image_embedding'] - ground_embedding)) s0_max_diff = np.max(np.abs(predictions['feats_s0'] - ground_feats_s0)) s0_avg_diff = np.mean(np.abs(predictions['feats_s0'] - ground_feats_s0)) s1_max_diff = np.max(np.abs(predictions['feats_s1'] - ground_feats_s1)) s1_avg_diff = np.mean(np.abs(predictions['feats_s1'] - ground_feats_s1)) print(f'Image Embedding: Max Diff: {img_max_diff:.4f}, Avg Diff: {img_avg_diff:.4f}') print(f'Feats S0: Max Diff: {s0_max_diff:.4f}, Avg Diff: {s0_avg_diff:.4f}') print(f'Feats S1: Max Diff: {s1_max_diff:.4f}, Avg Diff: {s1_avg_diff:.4f}') def validate_prompt_encoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, unnorm_coords, labels): predictions = model.predict({'points': unnorm_coords, 'labels': labels}) (ground_sparse, ground_dense) = ground_model.encode_points_raw(unnorm_coords, labels) ground_sparse = ground_sparse.numpy() ground_dense = ground_dense.numpy() sparse_max_diff = np.max(np.abs(predictions['sparse_embeddings'] - ground_sparse)) sparse_avg_diff = np.mean(np.abs(predictions['sparse_embeddings'] - ground_sparse)) dense_max_diff = np.max(np.abs(predictions['dense_embeddings'] - ground_dense)) dense_avg_diff = np.mean(np.abs(predictions['dense_embeddings'] - ground_dense)) print('Sparse Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(sparse_max_diff, sparse_avg_diff)) print('Dense Embeddings: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(dense_max_diff, dense_avg_diff)) assert np.allclose(predictions['sparse_embeddings'], ground_sparse, atol=0.009) assert np.allclose(predictions['dense_embeddings'], ground_dense, atol=0.001) def validate_mask_decoder(model: ct.models.MLModel, ground_model: SAM2ImagePredictor, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1, precision: ComputePrecision): predictions = model.predict({'image_embedding': image_embedding, 'sparse_embedding': sparse_embedding, 'dense_embedding': dense_embedding, 'feats_s0': feats_s0, 'feats_s1': feats_s1}) (ground_masks, scores) = ground_model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1]) ground_masks = ground_masks.numpy() masks_max_diff = np.max(np.abs(predictions['low_res_masks'] - ground_masks)) masks_avg_diff = np.mean(np.abs(predictions['low_res_masks'] - ground_masks)) print('Masks: Max Diff: {:.4f}, Avg Diff: {:.4f}'.format(masks_max_diff, masks_avg_diff)) atol = 0.07 if precision == ComputePrecision.FLOAT32 else 0.3 assert np.allclose(predictions['low_res_masks'], ground_masks, atol=atol) print(f"Scores: {predictions['scores']}, ground: {scores}") class SAM2PointsEncoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, points, labels): prompt_embedding = self.model.encode_points_raw(points, labels) return prompt_embedding class SAM2MaskDecoder(torch.nn.Module): def __init__(self, model: SAM2ImagePredictor): super().__init__() self.model = model @torch.no_grad() def forward(self, image_embedding, sparse_embedding, dense_embedding, feats_s0, feats_s1): (low_res_masks, iou_scores) = self.model.decode_masks_raw(image_embedding, sparse_embedding, dense_embedding, [feats_s0, feats_s1]) return (low_res_masks, iou_scores) def export_image_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision) -> Tuple[int, int]: image = Image.open('../notebooks/images/truck.jpg') image = np.array(image.convert('RGB')) orig_hw = (image.shape[0], image.shape[1]) prepared_image = image_predictor._transforms(image) prepared_image = prepared_image[None, ...].to('cpu') traced_model = torch.jit.trace(SAM2ImageEncoder(image_predictor).eval(), prepared_image) scale = 1 / (0.226 * 255.0) bias = [-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225] mlmodel = ct.convert(traced_model, inputs=[ct.ImageType(name='image', shape=(1, 3, SAM2_HW[0], SAM2_HW[1]), scale=scale, bias=bias)], outputs=[ct.TensorType(name='image_embedding'), ct.TensorType(name='feats_s0'), ct.TensorType(name='feats_s1')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) image = Image.open('../notebooks/images/truck.jpg') validate_image_encoder(mlmodel, image_predictor, image) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}ImageEncoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') return orig_hw def export_points_prompt_encoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, input_points: List[List[float]], input_labels: List[int], orig_hw: tuple, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): image_predictor.model.sam_prompt_encoder.eval() points = torch.tensor(input_points, dtype=torch.float32) labels = torch.tensor(input_labels, dtype=torch.int32) unnorm_coords = image_predictor._transforms.transform_coords(points, normalize=True, orig_hw=orig_hw) (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...]) traced_model = torch.jit.trace(SAM2PointsEncoder(image_predictor), (unnorm_coords, labels)) points_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16), 2)) labels_shape = ct.Shape(shape=(1, ct.RangeDim(lower_bound=1, upper_bound=16))) mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='points', shape=points_shape), ct.TensorType(name='labels', shape=labels_shape)], outputs=[ct.TensorType(name='sparse_embeddings'), ct.TensorType(name='dense_embeddings')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) validate_prompt_encoder(mlmodel, image_predictor, unnorm_coords, labels) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}PromptEncoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') def export_mask_decoder(image_predictor: SAM2ImagePredictor, variant: SAM2Variant, output_dir: str, min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): image_predictor.model.sam_mask_decoder.eval() s0 = torch.randn(1, 32, 256, 256) s1 = torch.randn(1, 64, 128, 128) image_embedding = torch.randn(1, 256, 64, 64) sparse_embedding = torch.randn(1, 3, 256) dense_embedding = torch.randn(1, 256, 64, 64) traced_model = torch.jit.trace(SAM2MaskDecoder(image_predictor), (image_embedding, sparse_embedding, dense_embedding, s0, s1)) traced_model.eval() mlmodel = ct.convert(traced_model, inputs=[ct.TensorType(name='image_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='sparse_embedding', shape=ct.EnumeratedShapes(shapes=[[1, i, 256] for i in range(2, 16)])), ct.TensorType(name='dense_embedding', shape=[1, 256, 64, 64]), ct.TensorType(name='feats_s0', shape=[1, 32, 256, 256]), ct.TensorType(name='feats_s1', shape=[1, 64, 128, 128])], outputs=[ct.TensorType(name='low_res_masks'), ct.TensorType(name='scores')], minimum_deployment_target=min_target, compute_units=compute_units, compute_precision=precision) validate_mask_decoder(mlmodel, image_predictor, image_embedding, sparse_embedding, dense_embedding, s0, s1, precision) output_path = os.path.join(output_dir, f'SAM2{variant.fmt()}MaskDecoder{precision.value.upper()}') mlmodel.save(output_path + '.mlpackage') Point = Tuple[float, float] Box = Tuple[float, float, float, float] def export(output_dir: str, variant: SAM2Variant, points: Optional[List[Point]], boxes: Optional[List[Box]], labels: Optional[List[int]], min_target: AvailableTarget, compute_units: ComputeUnit, precision: ComputePrecision): os.makedirs(output_dir, exist_ok=True) device = torch.device('cpu') sam2_checkpoint = f'facebook/sam2-hiera-{variant.value}' with torch.no_grad(): img_predictor = SAM2ImagePredictor.from_pretrained(sam2_checkpoint, device=device) img_predictor.model.eval() orig_hw = export_image_encoder(img_predictor, variant, output_dir, min_target, compute_units, precision) if boxes is not None and points is None: raise ValueError('Boxes are not supported yet') else: export_points_prompt_encoder(img_predictor, variant, points, labels, orig_hw, output_dir, min_target, compute_units, precision) export_mask_decoder(img_predictor, variant, output_dir, min_target, compute_units, precision) if __name__ == '__main__': parser = argparse.ArgumentParser(description='SAM2 -> CoreML CLI') parser = parse_args(parser) args = parser.parse_args() (points, boxes, labels) = (None, None, None) if args.points: points = [tuple(p) for p in ast.literal_eval(args.points)] if args.boxes: boxes = [tuple(b) for b in ast.literal_eval(args.boxes)] if args.labels: labels = ast.literal_eval(args.labels) if boxes and points: raise ValueError('Cannot provide both points and boxes') if points: if not isinstance(points, list) or not all((isinstance(p, tuple) and len(p) == 2 for p in points)): raise ValueError('Points must be a tuple of 2D points') if labels: if not isinstance(labels, list) or not all((isinstance(l, int) and l in [0, 1] for l in labels)): raise ValueError('Labels must denote foreground (1) or background (0)') if points: if len(points) != len(labels): raise ValueError('Number of points must match the number of labels') if len(points) > 16: raise ValueError('Number of points must be less than or equal to 16') if boxes: if not isinstance(boxes, list) or not all((isinstance(b, tuple) and len(b) == 4 for b in boxes)): raise ValueError('Boxes must be a tuple of 4D bounding boxes') export(args.output_dir, args.variant, points, boxes, labels, args.min_deployment_target, args.compute_units, args.precision) # File: segment-anything-2-coreml-conversion/sam2/automatic_mask_generator.py from typing import Any, Dict, List, Optional, Tuple import numpy as np import torch from torchvision.ops.boxes import batched_nms, box_area from sam2.modeling.sam2_base import SAM2Base from sam2.sam2_image_predictor import SAM2ImagePredictor from sam2.utils.amg import area_from_rle, batch_iterator, batched_mask_to_box, box_xyxy_to_xywh, build_all_layer_point_grids, calculate_stability_score, coco_encode_rle, generate_crop_boxes, is_box_near_crop_edge, mask_to_rle_pytorch, MaskData, remove_small_regions, rle_to_mask, uncrop_boxes_xyxy, uncrop_masks, uncrop_points class SAM2AutomaticMaskGenerator: def __init__(self, model: SAM2Base, points_per_side: Optional[int]=32, points_per_batch: int=64, pred_iou_thresh: float=0.8, stability_score_thresh: float=0.95, stability_score_offset: float=1.0, mask_threshold: float=0.0, box_nms_thresh: float=0.7, crop_n_layers: int=0, crop_nms_thresh: float=0.7, crop_overlap_ratio: float=512 / 1500, crop_n_points_downscale_factor: int=1, point_grids: Optional[List[np.ndarray]]=None, min_mask_region_area: int=0, output_mode: str='binary_mask', use_m2m: bool=False, multimask_output: bool=True, **kwargs) -> None: assert (points_per_side is None) != (point_grids is None), 'Exactly one of points_per_side or point_grid must be provided.' if points_per_side is not None: self.point_grids = build_all_layer_point_grids(points_per_side, crop_n_layers, crop_n_points_downscale_factor) elif point_grids is not None: self.point_grids = point_grids else: raise ValueError("Can't have both points_per_side and point_grid be None.") assert output_mode in ['binary_mask', 'uncompressed_rle', 'coco_rle'], f'Unknown output_mode {output_mode}.' if output_mode == 'coco_rle': try: from pycocotools import mask as mask_utils except ImportError as e: print('Please install pycocotools') raise e self.predictor = SAM2ImagePredictor(model, max_hole_area=min_mask_region_area, max_sprinkle_area=min_mask_region_area) self.points_per_batch = points_per_batch self.pred_iou_thresh = pred_iou_thresh self.stability_score_thresh = stability_score_thresh self.stability_score_offset = stability_score_offset self.mask_threshold = mask_threshold self.box_nms_thresh = box_nms_thresh self.crop_n_layers = crop_n_layers self.crop_nms_thresh = crop_nms_thresh self.crop_overlap_ratio = crop_overlap_ratio self.crop_n_points_downscale_factor = crop_n_points_downscale_factor self.min_mask_region_area = min_mask_region_area self.output_mode = output_mode self.use_m2m = use_m2m self.multimask_output = multimask_output @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2AutomaticMaskGenerator': from sam2.build_sam import build_sam2_hf sam_model = build_sam2_hf(model_id, **kwargs) return cls(sam_model, **kwargs) @torch.no_grad() def generate(self, image: np.ndarray) -> List[Dict[str, Any]]: mask_data = self._generate_masks(image) if self.output_mode == 'coco_rle': mask_data['segmentations'] = [coco_encode_rle(rle) for rle in mask_data['rles']] elif self.output_mode == 'binary_mask': mask_data['segmentations'] = [rle_to_mask(rle) for rle in mask_data['rles']] else: mask_data['segmentations'] = mask_data['rles'] curr_anns = [] for idx in range(len(mask_data['segmentations'])): ann = {'segmentation': mask_data['segmentations'][idx], 'area': area_from_rle(mask_data['rles'][idx]), 'bbox': box_xyxy_to_xywh(mask_data['boxes'][idx]).tolist(), 'predicted_iou': mask_data['iou_preds'][idx].item(), 'point_coords': [mask_data['points'][idx].tolist()], 'stability_score': mask_data['stability_score'][idx].item(), 'crop_box': box_xyxy_to_xywh(mask_data['crop_boxes'][idx]).tolist()} curr_anns.append(ann) return curr_anns def _generate_masks(self, image: np.ndarray) -> MaskData: orig_size = image.shape[:2] (crop_boxes, layer_idxs) = generate_crop_boxes(orig_size, self.crop_n_layers, self.crop_overlap_ratio) data = MaskData() for (crop_box, layer_idx) in zip(crop_boxes, layer_idxs): crop_data = self._process_crop(image, crop_box, layer_idx, orig_size) data.cat(crop_data) if len(crop_boxes) > 1: scores = 1 / box_area(data['crop_boxes']) scores = scores.to(data['boxes'].device) keep_by_nms = batched_nms(data['boxes'].float(), scores, torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.crop_nms_thresh) data.filter(keep_by_nms) data.to_numpy() return data def _process_crop(self, image: np.ndarray, crop_box: List[int], crop_layer_idx: int, orig_size: Tuple[int, ...]) -> MaskData: (x0, y0, x1, y1) = crop_box cropped_im = image[y0:y1, x0:x1, :] cropped_im_size = cropped_im.shape[:2] self.predictor.set_image(cropped_im) points_scale = np.array(cropped_im_size)[None, ::-1] points_for_image = self.point_grids[crop_layer_idx] * points_scale data = MaskData() for (points,) in batch_iterator(self.points_per_batch, points_for_image): batch_data = self._process_batch(points, cropped_im_size, crop_box, orig_size, normalize=True) data.cat(batch_data) del batch_data self.predictor.reset_predictor() keep_by_nms = batched_nms(data['boxes'].float(), data['iou_preds'], torch.zeros_like(data['boxes'][:, 0]), iou_threshold=self.box_nms_thresh) data.filter(keep_by_nms) data['boxes'] = uncrop_boxes_xyxy(data['boxes'], crop_box) data['points'] = uncrop_points(data['points'], crop_box) data['crop_boxes'] = torch.tensor([crop_box for _ in range(len(data['rles']))]) return data def _process_batch(self, points: np.ndarray, im_size: Tuple[int, ...], crop_box: List[int], orig_size: Tuple[int, ...], normalize=False) -> MaskData: (orig_h, orig_w) = orig_size points = torch.as_tensor(points, dtype=torch.float32, device=self.predictor.device) in_points = self.predictor._transforms.transform_coords(points, normalize=normalize, orig_hw=im_size) in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) (masks, iou_preds, low_res_masks) = self.predictor._predict(in_points[:, None, :], in_labels[:, None], multimask_output=self.multimask_output, return_logits=True) data = MaskData(masks=masks.flatten(0, 1), iou_preds=iou_preds.flatten(0, 1), points=points.repeat_interleave(masks.shape[1], dim=0), low_res_masks=low_res_masks.flatten(0, 1)) del masks if not self.use_m2m: if self.pred_iou_thresh > 0.0: keep_mask = data['iou_preds'] > self.pred_iou_thresh data.filter(keep_mask) data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset) if self.stability_score_thresh > 0.0: keep_mask = data['stability_score'] >= self.stability_score_thresh data.filter(keep_mask) else: in_points = self.predictor._transforms.transform_coords(data['points'], normalize=normalize, orig_hw=im_size) labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device) (masks, ious) = self.refine_with_m2m(in_points, labels, data['low_res_masks'], self.points_per_batch) data['masks'] = masks.squeeze(1) data['iou_preds'] = ious.squeeze(1) if self.pred_iou_thresh > 0.0: keep_mask = data['iou_preds'] > self.pred_iou_thresh data.filter(keep_mask) data['stability_score'] = calculate_stability_score(data['masks'], self.mask_threshold, self.stability_score_offset) if self.stability_score_thresh > 0.0: keep_mask = data['stability_score'] >= self.stability_score_thresh data.filter(keep_mask) data['masks'] = data['masks'] > self.mask_threshold data['boxes'] = batched_mask_to_box(data['masks']) keep_mask = ~is_box_near_crop_edge(data['boxes'], crop_box, [0, 0, orig_w, orig_h]) if not torch.all(keep_mask): data.filter(keep_mask) data['masks'] = uncrop_masks(data['masks'], crop_box, orig_h, orig_w) data['rles'] = mask_to_rle_pytorch(data['masks']) del data['masks'] return data @staticmethod def postprocess_small_regions(mask_data: MaskData, min_area: int, nms_thresh: float) -> MaskData: if len(mask_data['rles']) == 0: return mask_data new_masks = [] scores = [] for rle in mask_data['rles']: mask = rle_to_mask(rle) (mask, changed) = remove_small_regions(mask, min_area, mode='holes') unchanged = not changed (mask, changed) = remove_small_regions(mask, min_area, mode='islands') unchanged = unchanged and (not changed) new_masks.append(torch.as_tensor(mask).unsqueeze(0)) scores.append(float(unchanged)) masks = torch.cat(new_masks, dim=0) boxes = batched_mask_to_box(masks) keep_by_nms = batched_nms(boxes.float(), torch.as_tensor(scores), torch.zeros_like(boxes[:, 0]), iou_threshold=nms_thresh) for i_mask in keep_by_nms: if scores[i_mask] == 0.0: mask_torch = masks[i_mask].unsqueeze(0) mask_data['rles'][i_mask] = mask_to_rle_pytorch(mask_torch)[0] mask_data['boxes'][i_mask] = boxes[i_mask] mask_data.filter(keep_by_nms) return mask_data def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch): new_masks = [] new_iou_preds = [] for (cur_points, cur_point_labels, low_res_mask) in batch_iterator(points_per_batch, points, point_labels, low_res_masks): (best_masks, best_iou_preds, _) = self.predictor._predict(cur_points[:, None, :], cur_point_labels[:, None], mask_input=low_res_mask[:, None, :], multimask_output=False, return_logits=True) new_masks.append(best_masks) new_iou_preds.append(best_iou_preds) masks = torch.cat(new_masks, dim=0) return (masks, torch.cat(new_iou_preds, dim=0)) # File: segment-anything-2-coreml-conversion/sam2/build_sam.py import logging import torch from hydra import compose from hydra.utils import instantiate from omegaconf import OmegaConf def build_sam2(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs): if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98'] cfg = compose(config_name=config_file, overrides=hydra_overrides_extra) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == 'eval': model.eval() return model def build_sam2_video_predictor(config_file, ckpt_path=None, device='cuda', mode='eval', hydra_overrides_extra=[], apply_postprocessing=True, **kwargs): hydra_overrides = ['++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor'] if apply_postprocessing: hydra_overrides_extra = hydra_overrides_extra.copy() hydra_overrides_extra += ['++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05', '++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98', '++model.binarize_mask_from_pts_for_mem_enc=true', '++model.fill_hole_area=8'] hydra_overrides.extend(hydra_overrides_extra) cfg = compose(config_name=config_file, overrides=hydra_overrides) OmegaConf.resolve(cfg) model = instantiate(cfg.model, _recursive_=True) _load_checkpoint(model, ckpt_path) model = model.to(device) if mode == 'eval': model.eval() return model def build_sam2_hf(model_id, **kwargs): from huggingface_hub import hf_hub_download model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')} (config_name, checkpoint_name) = model_id_to_filenames[model_id] ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs) def build_sam2_video_predictor_hf(model_id, **kwargs): from huggingface_hub import hf_hub_download model_id_to_filenames = {'facebook/sam2-hiera-tiny': ('sam2_hiera_t.yaml', 'sam2_hiera_tiny.pt'), 'facebook/sam2-hiera-small': ('sam2_hiera_s.yaml', 'sam2_hiera_small.pt'), 'facebook/sam2-hiera-base-plus': ('sam2_hiera_b+.yaml', 'sam2_hiera_base_plus.pt'), 'facebook/sam2-hiera-large': ('sam2_hiera_l.yaml', 'sam2_hiera_large.pt')} (config_name, checkpoint_name) = model_id_to_filenames[model_id] ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name) return build_sam2_video_predictor(config_file=config_name, ckpt_path=ckpt_path, **kwargs) def _load_checkpoint(model, ckpt_path): if ckpt_path is not None: sd = torch.load(ckpt_path, map_location='cpu')['model'] (missing_keys, unexpected_keys) = model.load_state_dict(sd) if missing_keys: logging.error(missing_keys) raise RuntimeError() if unexpected_keys: logging.error(unexpected_keys) raise RuntimeError() logging.info('Loaded checkpoint sucessfully') # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/hieradet.py from functools import partial from typing import List, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from sam2.modeling.backbones.utils import PatchEmbed, window_partition, window_unpartition from sam2.modeling.sam2_utils import DropPath, MLP def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module=None) -> torch.Tensor: if pool is None: return x x = x.permute(0, 3, 1, 2) x = pool(x) x = x.permute(0, 2, 3, 1) if norm: x = norm(x) return x class MultiScaleAttention(nn.Module): def __init__(self, dim: int, dim_out: int, num_heads: int, q_pool: nn.Module=None): super().__init__() self.dim = dim self.dim_out = dim_out self.num_heads = num_heads self.q_pool = q_pool self.qkv = nn.Linear(dim, dim_out * 3) self.proj = nn.Linear(dim_out, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: (B, H, W, _) = x.shape qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1) (q, k, v) = torch.unbind(qkv, 2) if self.q_pool: q = do_pool(q.reshape(B, H, W, -1), self.q_pool) (H, W) = q.shape[1:3] q = q.reshape(B, H * W, self.num_heads, -1) x = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)) x = x.transpose(1, 2) x = x.reshape(B, H, W, -1) x = self.proj(x) return x class MultiScaleBlock(nn.Module): def __init__(self, dim: int, dim_out: int, num_heads: int, mlp_ratio: float=4.0, drop_path: float=0.0, norm_layer: Union[nn.Module, str]='LayerNorm', q_stride: Tuple[int, int]=None, act_layer: nn.Module=nn.GELU, window_size: int=0): super().__init__() if isinstance(norm_layer, str): norm_layer = partial(getattr(nn, norm_layer), eps=1e-06) self.dim = dim self.dim_out = dim_out self.norm1 = norm_layer(dim) self.window_size = window_size (self.pool, self.q_stride) = (None, q_stride) if self.q_stride: self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False) self.attn = MultiScaleAttention(dim, dim_out, num_heads=num_heads, q_pool=self.pool) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim_out) self.mlp = MLP(dim_out, int(dim_out * mlp_ratio), dim_out, num_layers=2, activation=act_layer) if dim != dim_out: self.proj = nn.Linear(dim, dim_out) def forward(self, x: torch.Tensor) -> torch.Tensor: shortcut = x x = self.norm1(x) if self.dim != self.dim_out: shortcut = do_pool(self.proj(x), self.pool) window_size = self.window_size if window_size > 0: (H, W) = (x.shape[1], x.shape[2]) (x, pad_hw) = window_partition(x, window_size) x = self.attn(x) if self.q_stride: window_size = self.window_size // self.q_stride[0] (H, W) = shortcut.shape[1:3] pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size pad_hw = (H + pad_h, W + pad_w) if self.window_size > 0: x = window_unpartition(x, window_size, pad_hw, (H, W)) x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Hiera(nn.Module): def __init__(self, embed_dim: int=96, num_heads: int=1, drop_path_rate: float=0.0, q_pool: int=3, q_stride: Tuple[int, int]=(2, 2), stages: Tuple[int, ...]=(2, 3, 16, 3), dim_mul: float=2.0, head_mul: float=2.0, window_pos_embed_bkg_spatial_size: Tuple[int, int]=(14, 14), window_spec: Tuple[int, ...]=(8, 4, 14, 7), global_att_blocks: Tuple[int, ...]=(12, 16, 20), return_interm_layers=True): super().__init__() assert len(stages) == len(window_spec) self.window_spec = window_spec depth = sum(stages) self.q_stride = q_stride self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)] assert 0 <= q_pool <= len(self.stage_ends[:-1]) self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool] self.return_interm_layers = return_interm_layers self.patch_embed = PatchEmbed(embed_dim=embed_dim) self.global_att_blocks = global_att_blocks self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)) self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] cur_stage = 1 self.blocks = nn.ModuleList() for i in range(depth): dim_out = embed_dim window_size = self.window_spec[cur_stage - 1] if self.global_att_blocks is not None: window_size = 0 if i in self.global_att_blocks else window_size if i - 1 in self.stage_ends: dim_out = int(embed_dim * dim_mul) num_heads = int(num_heads * head_mul) cur_stage += 1 block = MultiScaleBlock(dim=embed_dim, dim_out=dim_out, num_heads=num_heads, drop_path=dpr[i], q_stride=self.q_stride if i in self.q_pool_blocks else None, window_size=window_size) embed_dim = dim_out self.blocks.append(block) self.channel_list = [self.blocks[i].dim_out for i in self.stage_ends[::-1]] if return_interm_layers else [self.blocks[-1].dim_out] def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor: (h, w) = hw window_embed = self.pos_embed_window pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode='bicubic') tiles = [x // y for (x, y) in zip(pos_embed.shape, window_embed.shape)] pos_embed = pos_embed + window_embed.tile(tiles) pos_embed = pos_embed.permute(0, 2, 3, 1) return pos_embed def forward(self, x: torch.Tensor) -> List[torch.Tensor]: x = self.patch_embed(x) x = x + self._get_pos_embed(x.shape[1:3]) outputs = [] for (i, blk) in enumerate(self.blocks): x = blk(x) if i == self.stage_ends[-1] or (i in self.stage_ends and self.return_interm_layers): feats = x.permute(0, 3, 1, 2) outputs.append(feats) return outputs # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/image_encoder.py from typing import List, Optional import torch import torch.nn as nn import torch.nn.functional as F class ImageEncoder(nn.Module): def __init__(self, trunk: nn.Module, neck: nn.Module, scalp: int=0): super().__init__() self.trunk = trunk self.neck = neck self.scalp = scalp assert self.trunk.channel_list == self.neck.backbone_channel_list, f'Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}' def forward(self, sample: torch.Tensor): (features, pos) = self.neck(self.trunk(sample)) if self.scalp > 0: (features, pos) = (features[:-self.scalp], pos[:-self.scalp]) src = features[-1] output = {'vision_features': src, 'vision_pos_enc': pos, 'backbone_fpn': features} return output class FpnNeck(nn.Module): def __init__(self, position_encoding: nn.Module, d_model: int, backbone_channel_list: List[int], kernel_size: int=1, stride: int=1, padding: int=0, fpn_interp_model: str='bilinear', fuse_type: str='sum', fpn_top_down_levels: Optional[List[int]]=None): super().__init__() self.position_encoding = position_encoding self.convs = nn.ModuleList() self.backbone_channel_list = backbone_channel_list for dim in backbone_channel_list: current = nn.Sequential() current.add_module('conv', nn.Conv2d(in_channels=dim, out_channels=d_model, kernel_size=kernel_size, stride=stride, padding=padding)) self.convs.append(current) self.fpn_interp_model = fpn_interp_model assert fuse_type in ['sum', 'avg'] self.fuse_type = fuse_type if fpn_top_down_levels is None: fpn_top_down_levels = range(len(self.convs)) self.fpn_top_down_levels = list(fpn_top_down_levels) def forward(self, xs: List[torch.Tensor]): out = [None] * len(self.convs) pos = [None] * len(self.convs) assert len(xs) == len(self.convs) prev_features = None n = len(self.convs) - 1 for i in range(n, -1, -1): x = xs[i] lateral_features = self.convs[n - i](x) if i in self.fpn_top_down_levels and prev_features is not None: top_down_features = F.interpolate(prev_features.to(dtype=torch.float32), scale_factor=2.0, mode=self.fpn_interp_model, align_corners=None if self.fpn_interp_model == 'nearest' else False, antialias=False) prev_features = lateral_features + top_down_features if self.fuse_type == 'avg': prev_features /= 2 else: prev_features = lateral_features x_out = prev_features out[i] = x_out pos[i] = self.position_encoding(x_out).to(x_out.dtype) return (out, pos) # File: segment-anything-2-coreml-conversion/sam2/modeling/backbones/utils.py """""" from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F def window_partition(x, window_size): (B, H, W, C) = x.shape pad_h = (window_size - H % window_size) % window_size pad_w = (window_size - W % window_size) % window_size if pad_h > 0 or pad_w > 0: x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) (Hp, Wp) = (H + pad_h, W + pad_w) x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return (windows, (Hp, Wp)) def window_unpartition(windows, window_size, pad_hw, hw): (Hp, Wp) = pad_hw (H, W) = hw B = windows.shape[0] // (Hp * Wp // window_size // window_size) x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) if Hp > H or Wp > W: x = x[:, :H, :W, :].contiguous() return x class PatchEmbed(nn.Module): def __init__(self, kernel_size: Tuple[int, ...]=(7, 7), stride: Tuple[int, ...]=(4, 4), padding: Tuple[int, ...]=(3, 3), in_chans: int=3, embed_dim: int=768): super().__init__() self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) x = x.permute(0, 2, 3, 1) return x # File: segment-anything-2-coreml-conversion/sam2/modeling/memory_attention.py from typing import Optional import torch from torch import nn, Tensor from sam2.modeling.sam.transformer import RoPEAttention from sam2.modeling.sam2_utils import get_activation_fn, get_clones class MemoryAttentionLayer(nn.Module): def __init__(self, activation: str, cross_attention: nn.Module, d_model: int, dim_feedforward: int, dropout: float, pos_enc_at_attn: bool, pos_enc_at_cross_attn_keys: bool, pos_enc_at_cross_attn_queries: bool, self_attention: nn.Module): super().__init__() self.d_model = d_model self.dim_feedforward = dim_feedforward self.dropout_value = dropout self.self_attn = self_attention self.cross_attn_image = cross_attention self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation_str = activation self.activation = get_activation_fn(activation) self.pos_enc_at_attn = pos_enc_at_attn self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys def _forward_sa(self, tgt, query_pos): tgt2 = self.norm1(tgt) q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 tgt2 = self.self_attn(q, k, v=tgt2) tgt = tgt + self.dropout1(tgt2) return tgt def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): kwds = {} if num_k_exclude_rope > 0: assert isinstance(self.cross_attn_image, RoPEAttention) kwds = {'num_k_exclude_rope': num_k_exclude_rope} tgt2 = self.norm2(tgt) tgt2 = self.cross_attn_image(q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, v=memory, **kwds) tgt = tgt + self.dropout2(tgt2) return tgt def forward(self, tgt, memory, pos: Optional[Tensor]=None, query_pos: Optional[Tensor]=None, num_k_exclude_rope: int=0) -> torch.Tensor: tgt = self._forward_sa(tgt, query_pos) tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) tgt2 = self.norm3(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) tgt = tgt + self.dropout3(tgt2) return tgt class MemoryAttention(nn.Module): def __init__(self, d_model: int, pos_enc_at_input: bool, layer: nn.Module, num_layers: int, batch_first: bool=True): super().__init__() self.d_model = d_model self.layers = get_clones(layer, num_layers) self.num_layers = num_layers self.norm = nn.LayerNorm(d_model) self.pos_enc_at_input = pos_enc_at_input self.batch_first = batch_first def forward(self, curr: torch.Tensor, memory: torch.Tensor, curr_pos: Optional[Tensor]=None, memory_pos: Optional[Tensor]=None, num_obj_ptr_tokens: int=0): if isinstance(curr, list): assert isinstance(curr_pos, list) assert len(curr) == len(curr_pos) == 1 (curr, curr_pos) = (curr[0], curr_pos[0]) assert curr.shape[1] == memory.shape[1], 'Batch size must be the same for curr and memory' output = curr if self.pos_enc_at_input and curr_pos is not None: output = output + 0.1 * curr_pos if self.batch_first: output = output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) memory = memory.transpose(0, 1) memory_pos = memory_pos.transpose(0, 1) for layer in self.layers: kwds = {} if isinstance(layer.cross_attn_image, RoPEAttention): kwds = {'num_k_exclude_rope': num_obj_ptr_tokens} output = layer(tgt=output, memory=memory, pos=memory_pos, query_pos=curr_pos, **kwds) normed_output = self.norm(output) if self.batch_first: normed_output = normed_output.transpose(0, 1) curr_pos = curr_pos.transpose(0, 1) return normed_output # File: segment-anything-2-coreml-conversion/sam2/modeling/memory_encoder.py import math from typing import Tuple import torch import torch.nn as nn import torch.nn.functional as F from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d class MaskDownSampler(nn.Module): def __init__(self, embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16, activation=nn.GELU): super().__init__() num_layers = int(math.log2(total_stride) // math.log2(stride)) assert stride ** num_layers == total_stride self.encoder = nn.Sequential() (mask_in_chans, mask_out_chans) = (1, 1) for _ in range(num_layers): mask_out_chans = mask_in_chans * stride ** 2 self.encoder.append(nn.Conv2d(mask_in_chans, mask_out_chans, kernel_size=kernel_size, stride=stride, padding=padding)) self.encoder.append(LayerNorm2d(mask_out_chans)) self.encoder.append(activation()) mask_in_chans = mask_out_chans self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1)) def forward(self, x): return self.encoder(x) class CXBlock(nn.Module): def __init__(self, dim, kernel_size=7, padding=3, drop_path=0.0, layer_scale_init_value=1e-06, use_dwconv=True): super().__init__() self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=padding, groups=dim if use_dwconv else 1) self.norm = LayerNorm2d(dim, eps=1e-06) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def forward(self, x): input = x x = self.dwconv(x) x = self.norm(x) x = x.permute(0, 2, 3, 1) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma is not None: x = self.gamma * x x = x.permute(0, 3, 1, 2) x = input + self.drop_path(x) return x class Fuser(nn.Module): def __init__(self, layer, num_layers, dim=None, input_projection=False): super().__init__() self.proj = nn.Identity() self.layers = get_clones(layer, num_layers) if input_projection: assert dim is not None self.proj = nn.Conv2d(dim, dim, kernel_size=1) def forward(self, x): x = self.proj(x) for layer in self.layers: x = layer(x) return x class MemoryEncoder(nn.Module): def __init__(self, out_dim, mask_downsampler, fuser, position_encoding, in_dim=256): super().__init__() self.mask_downsampler = mask_downsampler self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1) self.fuser = fuser self.position_encoding = position_encoding self.out_proj = nn.Identity() if out_dim != in_dim: self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1) def forward(self, pix_feat: torch.Tensor, masks: torch.Tensor, skip_mask_sigmoid: bool=False) -> Tuple[torch.Tensor, torch.Tensor]: if not skip_mask_sigmoid: masks = F.sigmoid(masks) masks = self.mask_downsampler(masks) pix_feat = pix_feat.to(masks.device) x = self.pix_feat_proj(pix_feat) x = x + masks x = self.fuser(x) x = self.out_proj(x) pos = self.position_encoding(x).to(x.dtype) return {'vision_features': x, 'vision_pos_enc': [pos]} # File: segment-anything-2-coreml-conversion/sam2/modeling/position_encoding.py import math from typing import Any, Optional, Tuple import numpy as np import torch from torch import nn class PositionEmbeddingSine(nn.Module): def __init__(self, num_pos_feats, temperature: int=10000, normalize: bool=True, scale: Optional[float]=None): super().__init__() assert num_pos_feats % 2 == 0, 'Expecting even model width' self.num_pos_feats = num_pos_feats // 2 self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale self.cache = {} def _encode_xy(self, x, y): assert len(x) == len(y) and x.ndim == y.ndim == 1 x_embed = x * self.scale y_embed = y * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, None] / dim_t pos_y = y_embed[:, None] / dim_t pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1) pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1) return (pos_x, pos_y) @torch.no_grad() def encode_boxes(self, x, y, w, h): (pos_x, pos_y) = self._encode_xy(x, y) pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1) return pos encode = encode_boxes @torch.no_grad() def encode_points(self, x, y, labels): ((bx, nx), (by, ny), (bl, nl)) = (x.shape, y.shape, labels.shape) assert bx == by and nx == ny and (bx == bl) and (nx == nl) (pos_x, pos_y) = self._encode_xy(x.flatten(), y.flatten()) (pos_x, pos_y) = (pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)) pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2) return pos @torch.no_grad() def forward(self, x: torch.Tensor): cache_key = (x.shape[-2], x.shape[-1]) if cache_key in self.cache: return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1) y_embed = torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device).view(1, -1, 1).repeat(x.shape[0], 1, x.shape[-1]) x_embed = torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device).view(1, 1, -1).repeat(x.shape[0], x.shape[-2], 1) if self.normalize: eps = 1e-06 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) self.cache[cache_key] = pos[0] return pos class PositionEmbeddingRandom(nn.Module): def __init__(self, num_pos_feats: int=64, scale: Optional[float]=None) -> None: super().__init__() if scale is None or scale <= 0.0: scale = 1.0 self.register_buffer('positional_encoding_gaussian_matrix', scale * torch.randn((2, num_pos_feats))) def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: coords = 2 * coords - 1 coords = coords @ self.positional_encoding_gaussian_matrix coords = 2 * np.pi * coords return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) def forward(self, size: Tuple[int, int]) -> torch.Tensor: (h, w) = size device: Any = self.positional_encoding_gaussian_matrix.device grid = torch.ones((h, w), device=device, dtype=torch.float32) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / h x_embed = x_embed / w pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) return pe.permute(2, 0, 1) def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor: coords = coords_input.clone() coords[:, :, 0] = coords[:, :, 0] / image_size[1] coords[:, :, 1] = coords[:, :, 1] / image_size[0] return self._pe_encoding(coords.to(torch.float)) def init_t_xy(end_x: int, end_y: int): t = torch.arange(end_x * end_y, dtype=torch.float32) t_x = (t % end_x).float() t_y = torch.div(t, end_x, rounding_mode='floor').float() return (t_x, t_y) def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float=10000.0): freqs_x = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim) freqs_y = 1.0 / theta ** (torch.arange(0, dim, 4)[:dim // 4].float() / dim) (t_x, t_y) = init_t_xy(end_x, end_y) freqs_x = torch.outer(t_x, freqs_x) freqs_y = torch.outer(t_y, freqs_y) freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) shape = [d if i >= ndim - 2 else 1 for (i, d) in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_enc(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool=False): xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) if xk_ is None: return (xq_out.type_as(xq).to(xq.device), xk) if repeat_freqs_k: r = xk_.shape[-2] // xq_.shape[-2] if freqs_cis.is_cuda: freqs_cis = freqs_cis.repeat(*[1] * (freqs_cis.ndim - 2), r, 1) else: freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return (xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/mask_decoder.py from typing import List, Optional, Tuple, Type import torch from torch import nn from sam2.modeling.sam2_utils import LayerNorm2d, MLP class MaskDecoder(nn.Module): def __init__(self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int=3, activation: Type[nn.Module]=nn.GELU, iou_head_depth: int=3, iou_head_hidden_dim: int=256, use_high_res_features: bool=False, iou_prediction_use_sigmoid=False, dynamic_multimask_via_stability=False, dynamic_multimask_stability_delta=0.05, dynamic_multimask_stability_thresh=0.98, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, use_multimask_token_for_obj_ptr: bool=False) -> None: super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.pred_obj_scores = pred_obj_scores if self.pred_obj_scores: self.obj_score_token = nn.Embedding(1, transformer_dim) self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.output_upscaling = nn.Sequential(nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation()) self.use_high_res_features = use_high_res_features if use_high_res_features: self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1) self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1) self.output_hypernetworks_mlps = nn.ModuleList([MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens)]) self.iou_prediction_head = MLP(transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth, sigmoid_output=iou_prediction_use_sigmoid) if self.pred_obj_scores: self.pred_obj_score_head = nn.Linear(transformer_dim, 1) if pred_obj_scores_mlp: self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) self.dynamic_multimask_via_stability = dynamic_multimask_via_stability self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh def forward(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]: (masks, iou_pred, mask_tokens_out, object_score_logits) = self.predict_masks(image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, repeat_image=repeat_image, high_res_features=high_res_features) if multimask_output: masks = masks[:, 1:, :, :] iou_pred = iou_pred[:, 1:] elif self.dynamic_multimask_via_stability and (not self.training): (masks, iou_pred) = self._dynamic_multimask_via_stability(masks, iou_pred) else: masks = masks[:, 0:1, :, :] iou_pred = iou_pred[:, 0:1] if multimask_output and self.use_multimask_token_for_obj_ptr: sam_tokens_out = mask_tokens_out[:, 1:] else: sam_tokens_out = mask_tokens_out[:, 0:1] return (masks, iou_pred, sam_tokens_out, object_score_logits) def predict_masks(self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, repeat_image: bool, high_res_features: Optional[List[torch.Tensor]]=None) -> Tuple[torch.Tensor, torch.Tensor]: s = 0 if self.pred_obj_scores: output_tokens = torch.cat([self.obj_score_token.weight, self.iou_token.weight, self.mask_tokens.weight], dim=0) s = 1 else: output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) if repeat_image: src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) else: assert image_embeddings.shape[0] == tokens.shape[0] src = image_embeddings src = src + dense_prompt_embeddings assert image_pe.size(0) == 1, 'image_pe should have size 1 in batch dim (from `get_dense_pe()`)' pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) (b, c, h, w) = src.shape (hs, src) = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, s, :] mask_tokens_out = hs[:, s + 1:s + 1 + self.num_mask_tokens, :] src = src.transpose(1, 2).view(b, c, h, w) if not self.use_high_res_features: upscaled_embedding = self.output_upscaling(src) else: (dc1, ln1, act1, dc2, act2) = self.output_upscaling (feat_s0, feat_s1) = high_res_features upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) (b, c, h, w) = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) iou_pred = self.iou_prediction_head(iou_token_out) if self.pred_obj_scores: assert s == 1 object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) else: object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) return (masks, iou_pred, mask_tokens_out, object_score_logits) def _get_stability_scores(self, mask_logits): mask_logits = mask_logits.flatten(-2) stability_delta = self.dynamic_multimask_stability_delta area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) return stability_scores def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): multimask_logits = all_mask_logits[:, 1:, :, :] multimask_iou_scores = all_iou_scores[:, 1:] best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device) best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] best_multimask_logits = best_multimask_logits.unsqueeze(1) best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) singlemask_logits = all_mask_logits[:, 0:1, :, :] singlemask_iou_scores = all_iou_scores[:, 0:1] stability_scores = self._get_stability_scores(singlemask_logits) is_stable = stability_scores >= self.dynamic_multimask_stability_thresh mask_logits_out = torch.where(is_stable[..., None, None].expand_as(singlemask_logits), singlemask_logits, best_multimask_logits) iou_scores_out = torch.where(is_stable.expand_as(singlemask_iou_scores), singlemask_iou_scores, best_multimask_iou_scores) return (mask_logits_out, iou_scores_out) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/prompt_encoder.py from typing import Optional, Tuple, Type import torch from torch import nn from sam2.modeling.position_encoding import PositionEmbeddingRandom from sam2.modeling.sam2_utils import LayerNorm2d class PromptEncoder(nn.Module): def __init__(self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module]=nn.GELU) -> None: super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential(nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1)) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: points = points + 0.5 if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) mask_not_a_point = (labels == -1).float().unsqueeze(-1) mask_label_0 = (labels == 0).float().unsqueeze(-1) mask_label_1 = (labels == 1).float().unsqueeze(-1) mask_label_2 = (labels == 2).float().unsqueeze(-1) mask_label_3 = (labels == 3).float().unsqueeze(-1) point_embedding = point_embedding * (1 - mask_not_a_point) + self.not_a_point_embed.weight * mask_not_a_point + self.point_embeddings[0].weight * mask_label_0 + self.point_embeddings[1].weight * mask_label_1 + self.point_embeddings[2].weight * mask_label_2 + self.point_embeddings[3].weight * mask_label_3 return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: boxes = boxes + 0.5 coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> int: if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward(self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: (coords, labels) = points point_embeddings = self._embed_points(coords, labels, pad=boxes is None) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]) return (sparse_embeddings, dense_embeddings) def points_only(self, points: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: (coords, labels) = points sparse_embeddings = self._embed_points(coords, labels, pad=True) bs = points[0].shape[0] dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]) return (sparse_embeddings, dense_embeddings) # File: segment-anything-2-coreml-conversion/sam2/modeling/sam/transformer.py import contextlib import math import warnings from functools import partial from typing import Tuple, Type import torch import torch.nn.functional as F from torch import nn, Tensor from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis from sam2.modeling.sam2_utils import MLP from sam2.utils.misc import get_sdpa_settings warnings.simplefilter(action='ignore', category=FutureWarning) (OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON) = get_sdpa_settings() ALLOW_ALL_KERNELS = False def sdp_kernel_context(dropout_p): if ALLOW_ALL_KERNELS: return contextlib.nullcontext() return torch.backends.cuda.sdp_kernel(enable_flash=USE_FLASH_ATTN, enable_math=OLD_GPU and dropout_p > 0.0 or MATH_KERNEL_ON, enable_mem_efficient=OLD_GPU) class TwoWayTransformer(nn.Module): def __init__(self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2) -> None: super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append(TwoWayAttentionBlock(embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=i == 0)) self.final_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward(self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor) -> Tuple[Tensor, Tensor]: (bs, c, h, w) = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) queries = point_embedding keys = image_embedding for layer in self.layers: (queries, keys) = layer(queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe) q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return (queries, keys) class TwoWayAttentionBlock(nn.Module): def __init__(self, embedding_dim: int, num_heads: int, mlp_dim: int=2048, activation: Type[nn.Module]=nn.ReLU, attention_downsample_rate: int=2, skip_first_layer_pe: bool=False) -> None: super().__init__() self.self_attn = Attention(embedding_dim, num_heads) self.norm1 = nn.LayerNorm(embedding_dim) self.cross_attn_token_to_image = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.norm2 = nn.LayerNorm(embedding_dim) self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation) self.norm3 = nn.LayerNorm(embedding_dim) self.norm4 = nn.LayerNorm(embedding_dim) self.cross_attn_image_to_token = Attention(embedding_dim, num_heads, downsample_rate=attention_downsample_rate) self.skip_first_layer_pe = skip_first_layer_pe def forward(self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor) -> Tuple[Tensor, Tensor]: if self.skip_first_layer_pe: queries = self.self_attn(q=queries, k=queries, v=queries) else: q = queries + query_pe attn_out = self.self_attn(q=q, k=q, v=queries) queries = queries + attn_out queries = self.norm1(queries) q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm2(queries) mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.norm3(queries) q = queries + query_pe k = keys + key_pe attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) keys = keys + attn_out keys = self.norm4(keys) return (queries, keys) class Attention(nn.Module): def __init__(self, embedding_dim: int, num_heads: int, downsample_rate: int=1, dropout: float=0.0, kv_in_dim: int=None) -> None: super().__init__() self.embedding_dim = embedding_dim self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim self.internal_dim = embedding_dim // downsample_rate self.num_heads = num_heads assert self.internal_dim % num_heads == 0, 'num_heads must divide embedding_dim.' self.q_proj = nn.Linear(embedding_dim, self.internal_dim) self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, embedding_dim) self.dropout_p = dropout def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: (b, n, c) = x.shape x = x.reshape(b, n, num_heads, c // num_heads) return x.transpose(1, 2) def _recombine_heads(self, x: Tensor) -> Tensor: (b, n_heads, n_tokens, c_per_head) = x.shape x = x.transpose(1, 2) return x.reshape(b, n_tokens, n_heads * c_per_head) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) dropout_p = self.dropout_p if self.training else 0.0 try: with sdp_kernel_context(dropout_p): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) except Exception as e: warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2) global ALLOW_ALL_KERNELS ALLOW_ALL_KERNELS = True out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out class RoPEAttention(Attention): def __init__(self, *args, rope_theta=10000.0, rope_k_repeat=False, feat_sizes=(32, 32), **kwargs): super().__init__(*args, **kwargs) self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta) freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1]) self.freqs_cis = freqs_cis self.rope_k_repeat = rope_k_repeat def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int=0) -> Tensor: q = self.q_proj(q) k = self.k_proj(k) v = self.v_proj(v) q = self._separate_heads(q, self.num_heads) k = self._separate_heads(k, self.num_heads) v = self._separate_heads(v, self.num_heads) w = h = math.sqrt(q.shape[-2]) self.freqs_cis = self.freqs_cis.to(q.device) if self.freqs_cis.shape[0] != q.shape[-2]: self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device) if q.shape[-2] != k.shape[-2]: assert self.rope_k_repeat num_k_rope = k.size(-2) - num_k_exclude_rope (q, k[:, :, :num_k_rope]) = apply_rotary_enc(q, k[:, :, :num_k_rope], freqs_cis=self.freqs_cis, repeat_freqs_k=self.rope_k_repeat) dropout_p = self.dropout_p if self.training else 0.0 try: with sdp_kernel_context(dropout_p): out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) except Exception as e: warnings.warn(f'Flash Attention kernel failed due to: {e}\nFalling back to all available kernels for scaled_dot_product_attention (which may have a slower speed).', category=UserWarning, stacklevel=2) global ALLOW_ALL_KERNELS ALLOW_ALL_KERNELS = True out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p) out = self._recombine_heads(out) out = self.out_proj(out) return out # File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_base.py import torch import torch.distributed import torch.nn.functional as F from torch.nn.init import trunc_normal_ from sam2.modeling.sam.mask_decoder import MaskDecoder from sam2.modeling.sam.prompt_encoder import PromptEncoder from sam2.modeling.sam.transformer import TwoWayTransformer from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames NO_OBJ_SCORE = -1024.0 class SAM2Base(torch.nn.Module): def __init__(self, image_encoder, memory_attention, memory_encoder, num_maskmem=7, image_size=512, backbone_stride=16, sigmoid_scale_for_mem_enc=1.0, sigmoid_bias_for_mem_enc=0.0, binarize_mask_from_pts_for_mem_enc=False, use_mask_input_as_output_without_sam=False, max_cond_frames_in_attn=-1, directly_add_no_mem_embed=False, use_high_res_features_in_sam=False, multimask_output_in_sam=False, multimask_min_pt_num=1, multimask_max_pt_num=1, multimask_output_for_tracking=False, use_multimask_token_for_obj_ptr: bool=False, iou_prediction_use_sigmoid=False, memory_temporal_stride_for_eval=1, add_all_frames_to_correct_as_cond=False, non_overlap_masks_for_mem_enc=False, use_obj_ptrs_in_encoder=False, max_obj_ptrs_in_encoder=16, add_tpos_enc_to_obj_ptrs=True, proj_tpos_enc_in_obj_ptrs=False, only_obj_ptrs_in_the_past_for_eval=False, pred_obj_scores: bool=False, pred_obj_scores_mlp: bool=False, fixed_no_obj_ptr: bool=False, soft_no_obj_ptr: bool=False, use_mlp_for_obj_ptr_proj: bool=False, sam_mask_decoder_extra_args=None, compile_image_encoder: bool=False): super().__init__() self.image_encoder = image_encoder self.use_high_res_features_in_sam = use_high_res_features_in_sam self.num_feature_levels = 3 if use_high_res_features_in_sam else 1 self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder if use_obj_ptrs_in_encoder: self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4) self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs if proj_tpos_enc_in_obj_ptrs: assert add_tpos_enc_to_obj_ptrs self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval self.memory_attention = memory_attention self.hidden_dim = memory_attention.d_model self.memory_encoder = memory_encoder self.mem_dim = self.hidden_dim if hasattr(self.memory_encoder, 'out_proj') and hasattr(self.memory_encoder.out_proj, 'weight'): self.mem_dim = self.memory_encoder.out_proj.weight.shape[0] self.num_maskmem = num_maskmem self.maskmem_tpos_enc = torch.nn.Parameter(torch.zeros(num_maskmem, 1, 1, self.mem_dim)) trunc_normal_(self.maskmem_tpos_enc, std=0.02) self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim)) trunc_normal_(self.no_mem_embed, std=0.02) trunc_normal_(self.no_mem_pos_enc, std=0.02) self.directly_add_no_mem_embed = directly_add_no_mem_embed self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam self.multimask_output_in_sam = multimask_output_in_sam self.multimask_min_pt_num = multimask_min_pt_num self.multimask_max_pt_num = multimask_max_pt_num self.multimask_output_for_tracking = multimask_output_for_tracking self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid self.image_size = image_size self.backbone_stride = backbone_stride self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args self.pred_obj_scores = pred_obj_scores self.pred_obj_scores_mlp = pred_obj_scores_mlp self.fixed_no_obj_ptr = fixed_no_obj_ptr self.soft_no_obj_ptr = soft_no_obj_ptr if self.fixed_no_obj_ptr: assert self.pred_obj_scores assert self.use_obj_ptrs_in_encoder if self.pred_obj_scores and self.use_obj_ptrs_in_encoder: self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim)) trunc_normal_(self.no_obj_ptr, std=0.02) self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj self._build_sam_heads() self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond self.max_cond_frames_in_attn = max_cond_frames_in_attn if compile_image_encoder: print('Image encoder compilation is enabled. First forward pass will be slow.') self.image_encoder.forward = torch.compile(self.image_encoder.forward, mode='max-autotune', fullgraph=True, dynamic=False) @property def device(self): return next(self.parameters()).device def forward(self, *args, **kwargs): raise NotImplementedError('Please use the corresponding methods in SAM2VideoPredictor for inference.See notebooks/video_predictor_example.ipynb for an example.') def _build_sam_heads(self): self.sam_prompt_embed_dim = self.hidden_dim self.sam_image_embedding_size = self.image_size // self.backbone_stride self.sam_prompt_encoder = PromptEncoder(embed_dim=self.sam_prompt_embed_dim, image_embedding_size=(self.sam_image_embedding_size, self.sam_image_embedding_size), input_image_size=(self.image_size, self.image_size), mask_in_chans=16) self.sam_mask_decoder = MaskDecoder(num_multimask_outputs=3, transformer=TwoWayTransformer(depth=2, embedding_dim=self.sam_prompt_embed_dim, mlp_dim=2048, num_heads=8), transformer_dim=self.sam_prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, use_high_res_features=self.use_high_res_features_in_sam, iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid, pred_obj_scores=self.pred_obj_scores, pred_obj_scores_mlp=self.pred_obj_scores_mlp, use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr, **self.sam_mask_decoder_extra_args or {}) if self.use_obj_ptrs_in_encoder: self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim) if self.use_mlp_for_obj_ptr_proj: self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3) else: self.obj_ptr_proj = torch.nn.Identity() if self.proj_tpos_enc_in_obj_ptrs: self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim) else: self.obj_ptr_tpos_proj = torch.nn.Identity() def _forward_sam_heads(self, backbone_features, point_inputs=None, mask_inputs=None, high_res_features=None, multimask_output=False): B = backbone_features.size(0) device = backbone_features.device assert backbone_features.size(1) == self.sam_prompt_embed_dim assert backbone_features.size(2) == self.sam_image_embedding_size assert backbone_features.size(3) == self.sam_image_embedding_size if point_inputs is not None: sam_point_coords = point_inputs['point_coords'] sam_point_labels = point_inputs['point_labels'] assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B else: sam_point_coords = torch.zeros(B, 1, 2, device=device) sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device) if mask_inputs is not None: assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1) if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size: sam_mask_prompt = F.interpolate(mask_inputs.float(), size=self.sam_prompt_encoder.mask_input_size, align_corners=False, mode='bilinear', antialias=True) else: sam_mask_prompt = mask_inputs else: sam_mask_prompt = None (sparse_embeddings, dense_embeddings) = self.sam_prompt_encoder(points=(sam_point_coords, sam_point_labels), boxes=None, masks=sam_mask_prompt) (low_res_multimasks, ious, sam_output_tokens, object_score_logits) = self.sam_mask_decoder(image_embeddings=backbone_features, image_pe=self.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=False, high_res_features=high_res_features) if self.pred_obj_scores: is_obj_appearing = object_score_logits > 0 low_res_multimasks = torch.where(is_obj_appearing[:, None, None], low_res_multimasks, NO_OBJ_SCORE) low_res_multimasks = low_res_multimasks.float() high_res_multimasks = F.interpolate(low_res_multimasks, size=(self.image_size, self.image_size), mode='bilinear', align_corners=False) sam_output_token = sam_output_tokens[:, 0] if multimask_output: best_iou_inds = torch.argmax(ious, dim=-1) batch_inds = torch.arange(B, device=device) low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1) if sam_output_tokens.size(1) > 1: sam_output_token = sam_output_tokens[batch_inds, best_iou_inds] else: (low_res_masks, high_res_masks) = (low_res_multimasks, high_res_multimasks) obj_ptr = self.obj_ptr_proj(sam_output_token) if self.pred_obj_scores: if self.soft_no_obj_ptr: assert not self.teacher_force_obj_scores_for_mem lambda_is_obj_appearing = object_score_logits.sigmoid() else: lambda_is_obj_appearing = is_obj_appearing.float() if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return (low_res_multimasks, high_res_multimasks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits) def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs): (out_scale, out_bias) = (20.0, -10.0) mask_inputs_float = mask_inputs.float() high_res_masks = mask_inputs_float * out_scale + out_bias low_res_masks = F.interpolate(high_res_masks, size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4), align_corners=False, mode='bilinear', antialias=True) ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float() if not self.use_obj_ptrs_in_encoder: obj_ptr = torch.zeros(mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device) else: (_, _, _, _, _, obj_ptr, _) = self._forward_sam_heads(backbone_features=backbone_features, mask_inputs=self.mask_downsample(mask_inputs_float), high_res_features=high_res_features) is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1) is_obj_appearing = is_obj_appearing[..., None] lambda_is_obj_appearing = is_obj_appearing.float() object_score_logits = out_scale * lambda_is_obj_appearing + out_bias if self.pred_obj_scores: if self.fixed_no_obj_ptr: obj_ptr = lambda_is_obj_appearing * obj_ptr obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr return (low_res_masks, high_res_masks, ious, low_res_masks, high_res_masks, obj_ptr, object_score_logits) def forward_image(self, img_batch: torch.Tensor): backbone_out = self.image_encoder(img_batch) if self.use_high_res_features_in_sam: backbone_out['backbone_fpn'][0] = self.sam_mask_decoder.conv_s0(backbone_out['backbone_fpn'][0]) backbone_out['backbone_fpn'][1] = self.sam_mask_decoder.conv_s1(backbone_out['backbone_fpn'][1]) return backbone_out def _prepare_backbone_features(self, backbone_out): backbone_out = backbone_out.copy() assert len(backbone_out['backbone_fpn']) == len(backbone_out['vision_pos_enc']) assert len(backbone_out['backbone_fpn']) >= self.num_feature_levels feature_maps = backbone_out['backbone_fpn'][-self.num_feature_levels:] vision_pos_embeds = backbone_out['vision_pos_enc'][-self.num_feature_levels:] feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds] vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps] vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds] return (backbone_out, vision_feats, vision_pos_embeds, feat_sizes) def _prepare_memory_conditioned_features(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, output_dict, num_frames, track_in_reverse=False): B = current_vision_feats[-1].size(1) C = self.hidden_dim (H, W) = feat_sizes[-1] device = current_vision_feats[-1].device if self.num_maskmem == 0: pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) return pix_feat num_obj_ptr_tokens = 0 if not is_init_cond_frame: (to_cat_memory, to_cat_memory_pos_embed) = ([], []) assert len(output_dict['cond_frame_outputs']) > 0 cond_outputs = output_dict['cond_frame_outputs'] (selected_cond_outputs, unselected_cond_outputs) = select_closest_cond_frames(frame_idx, cond_outputs, self.max_cond_frames_in_attn) t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()] r = self.memory_temporal_stride_for_eval for t_pos in range(1, self.num_maskmem): t_rel = self.num_maskmem - t_pos if t_rel == 1: if not track_in_reverse: prev_frame_idx = frame_idx - t_rel else: prev_frame_idx = frame_idx + t_rel elif not track_in_reverse: prev_frame_idx = (frame_idx - 2) // r * r prev_frame_idx = prev_frame_idx - (t_rel - 2) * r else: prev_frame_idx = -(-(frame_idx + 2) // r) * r prev_frame_idx = prev_frame_idx + (t_rel - 2) * r out = output_dict['non_cond_frame_outputs'].get(prev_frame_idx, None) if out is None: out = unselected_cond_outputs.get(prev_frame_idx, None) t_pos_and_prevs.append((t_pos, out)) for (t_pos, prev) in t_pos_and_prevs: if prev is None: continue feats = prev['maskmem_features'].to(device, non_blocking=True) to_cat_memory.append(feats.flatten(2).permute(2, 0, 1)) maskmem_enc = prev['maskmem_pos_enc'][-1].to(device) maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1) maskmem_enc = maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1] to_cat_memory_pos_embed.append(maskmem_enc) if self.use_obj_ptrs_in_encoder: max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder) if not self.training and self.only_obj_ptrs_in_the_past_for_eval: ptr_cond_outputs = {t: out for (t, out) in selected_cond_outputs.items() if (t >= frame_idx if track_in_reverse else t <= frame_idx)} else: ptr_cond_outputs = selected_cond_outputs pos_and_ptrs = [(abs(frame_idx - t), out['obj_ptr']) for (t, out) in ptr_cond_outputs.items()] for t_diff in range(1, max_obj_ptrs_in_encoder): t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff if t < 0 or (num_frames is not None and t >= num_frames): break out = output_dict['non_cond_frame_outputs'].get(t, unselected_cond_outputs.get(t, None)) if out is not None: pos_and_ptrs.append((t_diff, out['obj_ptr'])) if len(pos_and_ptrs) > 0: (pos_list, ptrs_list) = zip(*pos_and_ptrs) obj_ptrs = torch.stack(ptrs_list, dim=0) if self.add_tpos_enc_to_obj_ptrs: t_diff_max = max_obj_ptrs_in_encoder - 1 tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim obj_pos = torch.tensor(pos_list, device=device) obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim) obj_pos = self.obj_ptr_tpos_proj(obj_pos) obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim) else: obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim) if self.mem_dim < C: obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim) obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1) obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0) to_cat_memory.append(obj_ptrs) to_cat_memory_pos_embed.append(obj_pos) num_obj_ptr_tokens = obj_ptrs.shape[0] else: num_obj_ptr_tokens = 0 else: if self.directly_add_no_mem_embed: pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)] to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)] memory = torch.cat(to_cat_memory, dim=0) memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0) pix_feat_with_mem = self.memory_attention(curr=current_vision_feats, curr_pos=current_vision_pos_embeds, memory=memory, memory_pos=memory_pos_embed, num_obj_ptr_tokens=num_obj_ptr_tokens) pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W) return pix_feat_with_mem def _encode_new_memory(self, current_vision_feats, feat_sizes, pred_masks_high_res, is_mask_from_pts): B = current_vision_feats[-1].size(1) C = self.hidden_dim (H, W) = feat_sizes[-1] pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W) if self.non_overlap_masks_for_mem_enc and (not self.training): pred_masks_high_res = self._apply_non_overlapping_constraints(pred_masks_high_res) binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts if binarize and (not self.training): mask_for_mem = (pred_masks_high_res > 0).float() else: mask_for_mem = torch.sigmoid(pred_masks_high_res) if self.sigmoid_scale_for_mem_enc != 1.0: mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc if self.sigmoid_bias_for_mem_enc != 0.0: mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc maskmem_out = self.memory_encoder(pix_feat, mask_for_mem, skip_mask_sigmoid=True) maskmem_features = maskmem_out['vision_features'] maskmem_pos_enc = maskmem_out['vision_pos_enc'] return (maskmem_features, maskmem_pos_enc) def track_step(self, frame_idx, is_init_cond_frame, current_vision_feats, current_vision_pos_embeds, feat_sizes, point_inputs, mask_inputs, output_dict, num_frames, track_in_reverse=False, run_mem_encoder=True, prev_sam_mask_logits=None): current_out = {'point_inputs': point_inputs, 'mask_inputs': mask_inputs} if len(current_vision_feats) > 1: high_res_features = [x.permute(1, 2, 0).view(x.size(1), x.size(2), *s) for (x, s) in zip(current_vision_feats[:-1], feat_sizes[:-1])] else: high_res_features = None if mask_inputs is not None and self.use_mask_input_as_output_without_sam: pix_feat = current_vision_feats[-1].permute(1, 2, 0) pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1]) sam_outputs = self._use_mask_as_output(pix_feat, high_res_features, mask_inputs) else: pix_feat_with_mem = self._prepare_memory_conditioned_features(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats[-1:], current_vision_pos_embeds=current_vision_pos_embeds[-1:], feat_sizes=feat_sizes[-1:], output_dict=output_dict, num_frames=num_frames, track_in_reverse=track_in_reverse) if prev_sam_mask_logits is not None: assert point_inputs is not None and mask_inputs is None mask_inputs = prev_sam_mask_logits multimask_output = self._use_multimask(is_init_cond_frame, point_inputs) sam_outputs = self._forward_sam_heads(backbone_features=pix_feat_with_mem, point_inputs=point_inputs, mask_inputs=mask_inputs, high_res_features=high_res_features, multimask_output=multimask_output) (_, _, _, low_res_masks, high_res_masks, obj_ptr, _) = sam_outputs current_out['pred_masks'] = low_res_masks current_out['pred_masks_high_res'] = high_res_masks current_out['obj_ptr'] = obj_ptr if run_mem_encoder and self.num_maskmem > 0: high_res_masks_for_mem_enc = high_res_masks (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks_for_mem_enc, is_mask_from_pts=point_inputs is not None) current_out['maskmem_features'] = maskmem_features current_out['maskmem_pos_enc'] = maskmem_pos_enc else: current_out['maskmem_features'] = None current_out['maskmem_pos_enc'] = None return current_out def _use_multimask(self, is_init_cond_frame, point_inputs): num_pts = 0 if point_inputs is None else point_inputs['point_labels'].size(1) multimask_output = self.multimask_output_in_sam and (is_init_cond_frame or self.multimask_output_for_tracking) and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num) return multimask_output def _apply_non_overlapping_constraints(self, pred_masks): batch_size = pred_masks.size(0) if batch_size == 1: return pred_masks device = pred_masks.device max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True) batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None] keep = max_obj_inds == batch_obj_inds pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0)) return pred_masks # File: segment-anything-2-coreml-conversion/sam2/modeling/sam2_utils.py import copy import torch import torch.nn as nn import torch.nn.functional as F def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num): if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num: selected_outputs = cond_frame_outputs unselected_outputs = {} else: assert max_cond_frame_num >= 2, 'we should allow using 2+ conditioning frames' selected_outputs = {} idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None) if idx_before is not None: selected_outputs[idx_before] = cond_frame_outputs[idx_before] idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None) if idx_after is not None: selected_outputs[idx_after] = cond_frame_outputs[idx_after] num_remain = max_cond_frame_num - len(selected_outputs) inds_remain = sorted((t for t in cond_frame_outputs if t not in selected_outputs), key=lambda x: abs(x - frame_idx))[:num_remain] selected_outputs.update(((t, cond_frame_outputs[t]) for t in inds_remain)) unselected_outputs = {t: v for (t, v) in cond_frame_outputs.items() if t not in selected_outputs} return (selected_outputs, unselected_outputs) def get_1d_sine_pe(pos_inds, dim, temperature=10000): pe_dim = dim // 2 dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device) dim_t = temperature ** (2 * (dim_t // 2) / pe_dim) pos_embed = pos_inds.unsqueeze(-1) / dim_t pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1) return pos_embed def get_activation_fn(activation): if activation == 'relu': return F.relu if activation == 'gelu': return F.gelu if activation == 'glu': return F.glu raise RuntimeError(f'activation should be relu/gelu, not {activation}.') def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) class DropPath(nn.Module): def __init__(self, drop_prob=0.0, scale_by_keep=True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): if self.drop_prob == 0.0 or not self.training: return x keep_prob = 1 - self.drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and self.scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class MLP(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, activation: nn.Module=nn.ReLU, sigmoid_output: bool=False) -> None: super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList((nn.Linear(n, k) for (n, k) in zip([input_dim] + h, h + [output_dim]))) self.sigmoid_output = sigmoid_output self.act = activation() def forward(self, x): for (i, layer) in enumerate(self.layers): x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x) if self.sigmoid_output: x = F.sigmoid(x) return x class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float=1e-06) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x # File: segment-anything-2-coreml-conversion/sam2/sam2_image_predictor.py import os import logging from typing import List, Optional, Tuple, Union import numpy as np import torch from PIL.Image import Image from sam2.modeling.sam2_base import SAM2Base from sam2.utils.transforms import SAM2Transforms class SAM2ImagePredictor: def __init__(self, sam_model: SAM2Base, mask_threshold=0.0, max_hole_area=0.0, max_sprinkle_area=0.0, **kwargs) -> None: super().__init__() self.model = sam_model self._transforms = SAM2Transforms(resolution=self.model.image_size, mask_threshold=mask_threshold, max_hole_area=max_hole_area, max_sprinkle_area=max_sprinkle_area) self._is_image_set = False self._features = None self._orig_hw = None self._is_batch = False self.mask_threshold = mask_threshold self._bb_feat_sizes = [(256, 256), (128, 128), (64, 64)] @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2ImagePredictor': from sam2.build_sam import build_sam2_hf sam_model = build_sam2_hf(model_id, **kwargs) return cls(sam_model, **kwargs) @torch.no_grad() def set_image(self, image: Union[np.ndarray, Image]) -> None: self.reset_predictor() if isinstance(image, np.ndarray): logging.info('For numpy array image, we assume (HxWxC) format') self._orig_hw = [image.shape[:2]] elif isinstance(image, Image): (w, h) = image.size self._orig_hw = [(h, w)] else: raise NotImplementedError('Image format not supported') input_image = self._transforms(image) input_image = input_image[None, ...].to(self.device) assert len(input_image.shape) == 4 and input_image.shape[1] == 3, f'input_image must be of size 1x3xHxW, got {input_image.shape}' logging.info('Computing image embeddings for the provided image...') backbone_out = self.model.forward_image(input_image) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]} self._is_image_set = True serialize_ground = os.environ.get('SERIALIZE_GROUND', False) if serialize_ground: image_embed = self._features['image_embed'].cpu().numpy() high_res_feats = self._features['high_res_feats'] feats_s0 = high_res_feats[0].cpu().numpy() feats_s1 = high_res_feats[1].cpu().numpy() np.save('image_embed.npy', image_embed) np.save('feats_s0.npy', feats_s0) np.save('feats_s1.npy', feats_s1) logging.info('Image embeddings computed.') @torch.no_grad() def encode_image_raw(self, prepared_image: torch.Tensor): self.model.eval() with torch.no_grad(): for (_, param) in self.model.named_parameters(): if param.requires_grad: param.requires_grad = False backbone_out = self.model.forward_image(prepared_image) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(1, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] image_embed = feats[-1] high_res_feats = feats[:-1] assert len(high_res_feats) == 2 (feats_s0, feats_s1) = (high_res_feats[0], high_res_feats[1]) return (image_embed, feats_s0, feats_s1) @torch.no_grad() def encode_points_raw(self, unnorm_coords: torch.Tensor, labels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: concat_points = (unnorm_coords, labels) with torch.no_grad(): for (_, param) in self.model.named_parameters(): if param.requires_grad: param.requires_grad = False (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder.points_only(points=concat_points) return (sparse_embeddings, dense_embeddings) @torch.no_grad() def decode_masks_raw(self, image_embeddings: torch.Tensor, sparse_embedding: torch.Tensor, dense_embedding: torch.Tensor, high_res_features: List[torch.Tensor], multimask_output: bool=True, batched_mode: bool=False): with torch.no_grad(): for (_, param) in self.model.sam_mask_decoder.named_parameters(): if param.requires_grad: param.requires_grad = False (low_res_masks, iou_scores, _, _) = self.model.sam_mask_decoder(image_embeddings=image_embeddings, image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embedding, dense_prompt_embeddings=dense_embedding, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features) return (low_res_masks, iou_scores) @torch.no_grad() def set_image_batch(self, image_list: List[Union[np.ndarray]]) -> None: self.reset_predictor() assert isinstance(image_list, list) self._orig_hw = [] for image in image_list: assert isinstance(image, np.ndarray), 'Images are expected to be an np.ndarray in RGB format, and of shape HWC' self._orig_hw.append(image.shape[:2]) img_batch = self._transforms.forward_batch(image_list) img_batch = img_batch.to(self.device) batch_size = img_batch.shape[0] assert len(img_batch.shape) == 4 and img_batch.shape[1] == 3, f'img_batch must be of size Bx3xHxW, got {img_batch.shape}' logging.info('Computing image embeddings for the provided images...') backbone_out = self.model.forward_image(img_batch) (_, vision_feats, _, _) = self.model._prepare_backbone_features(backbone_out) if self.model.directly_add_no_mem_embed: vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed feats = [feat.permute(1, 2, 0).view(batch_size, -1, *feat_size) for (feat, feat_size) in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])][::-1] self._features = {'image_embed': feats[-1], 'high_res_feats': feats[:-1]} self._is_image_set = True self._is_batch = True logging.info('Image embeddings computed.') def predict_batch(self, point_coords_batch: List[np.ndarray]=None, point_labels_batch: List[np.ndarray]=None, box_batch: List[np.ndarray]=None, mask_input_batch: List[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]: assert self._is_batch, 'This function should only be used when in batched mode' if not self._is_image_set: raise RuntimeError('An image must be set with .set_image_batch(...) before mask prediction.') num_images = len(self._features['image_embed']) all_masks = [] all_ious = [] all_low_res_masks = [] for img_idx in range(num_images): point_coords = point_coords_batch[img_idx] if point_coords_batch is not None else None point_labels = point_labels_batch[img_idx] if point_labels_batch is not None else None box = box_batch[img_idx] if box_batch is not None else None mask_input = mask_input_batch[img_idx] if mask_input_batch is not None else None (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords, img_idx=img_idx) (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits, img_idx=img_idx) masks_np = masks.squeeze(0).float().detach().cpu().numpy() iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() all_masks.append(masks_np) all_ious.append(iou_predictions_np) all_low_res_masks.append(low_res_masks_np) return (all_masks, all_ious, all_low_res_masks) def predict(self, point_coords: Optional[np.ndarray]=None, point_labels: Optional[np.ndarray]=None, box: Optional[np.ndarray]=None, mask_input: Optional[np.ndarray]=None, multimask_output: bool=True, return_logits: bool=False, normalize_coords=True) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') (mask_input, unnorm_coords, labels, unnorm_box) = self._prep_prompts(point_coords, point_labels, box, mask_input, normalize_coords) (masks, iou_predictions, low_res_masks) = self._predict(unnorm_coords, labels, unnorm_box, mask_input, multimask_output, return_logits=return_logits) masks_np = masks.squeeze(0).float().detach().cpu().numpy() iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy() low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy() return (masks_np, iou_predictions_np, low_res_masks_np) def _prep_prompts(self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1): (unnorm_coords, labels, unnorm_box, mask_input) = (None, None, None, None) if point_coords is not None: assert point_labels is not None, 'point_labels must be supplied if point_coords is supplied.' point_coords = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) unnorm_coords = self._transforms.transform_coords(point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]) labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) if len(unnorm_coords.shape) == 2: (unnorm_coords, labels) = (unnorm_coords[None, ...], labels[None, ...]) if box is not None: box = torch.as_tensor(box, dtype=torch.float, device=self.device) unnorm_box = self._transforms.transform_boxes(box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]) if mask_logits is not None: mask_input = torch.as_tensor(mask_logits, dtype=torch.float, device=self.device) if len(mask_input.shape) == 3: mask_input = mask_input[None, :, :, :] return (mask_input, unnorm_coords, labels, unnorm_box) @torch.no_grad() def _predict(self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor]=None, mask_input: Optional[torch.Tensor]=None, multimask_output: bool=True, return_logits: bool=False, img_idx: int=-1) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) before mask prediction.') if point_coords is not None: concat_points = (point_coords, point_labels) else: concat_points = None if boxes is not None: box_coords = boxes.reshape(-1, 2, 2) box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device) box_labels = box_labels.repeat(boxes.size(0), 1) if concat_points is not None: concat_coords = torch.cat([box_coords, concat_points[0]], dim=1) concat_labels = torch.cat([box_labels, concat_points[1]], dim=1) concat_points = (concat_coords, concat_labels) else: concat_points = (box_coords, box_labels) (sparse_embeddings, dense_embeddings) = self.model.sam_prompt_encoder(points=concat_points, boxes=None, masks=mask_input) batched_mode = concat_points is not None and concat_points[0].shape[0] > 1 high_res_features = [feat_level[img_idx].unsqueeze(0) for feat_level in self._features['high_res_feats']] (low_res_masks, iou_predictions, _, _) = self.model.sam_mask_decoder(image_embeddings=self._features['image_embed'][img_idx].unsqueeze(0), image_pe=self.model.sam_prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, repeat_image=batched_mode, high_res_features=high_res_features) if os.environ.get('SERIALIZE_GROUND', False): low_res_masks_np = low_res_masks.cpu().numpy() np.save('low_res_masks.npy', low_res_masks_np) masks = self._transforms.postprocess_masks(low_res_masks, self._orig_hw[img_idx]) low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0) if not return_logits: masks = masks > self.mask_threshold return (masks, iou_predictions, low_res_masks) def get_image_embedding(self) -> torch.Tensor: if not self._is_image_set: raise RuntimeError('An image must be set with .set_image(...) to generate an embedding.') assert self._features is not None, 'Features must exist if an image has been set.' return self._features['image_embed'] @property def device(self) -> torch.device: return self.model.device def reset_predictor(self) -> None: self._is_image_set = False self._features = None self._orig_hw = None self._is_batch = False # File: segment-anything-2-coreml-conversion/sam2/sam2_video_predictor.py import warnings from collections import OrderedDict import torch from tqdm import tqdm from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames class SAM2VideoPredictor(SAM2Base): def __init__(self, fill_hole_area=0, non_overlap_masks=False, clear_non_cond_mem_around_input=False, clear_non_cond_mem_for_multi_obj=False, **kwargs): super().__init__(**kwargs) self.fill_hole_area = fill_hole_area self.non_overlap_masks = non_overlap_masks self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj @torch.inference_mode() def init_state(self, video_path, offload_video_to_cpu=False, offload_state_to_cpu=False, async_loading_frames=False): compute_device = self.device (images, video_height, video_width) = load_video_frames(video_path=video_path, image_size=self.image_size, offload_video_to_cpu=offload_video_to_cpu, async_loading_frames=async_loading_frames, compute_device=compute_device) inference_state = {} inference_state['images'] = images inference_state['num_frames'] = len(images) inference_state['offload_video_to_cpu'] = offload_video_to_cpu inference_state['offload_state_to_cpu'] = offload_state_to_cpu inference_state['video_height'] = video_height inference_state['video_width'] = video_width inference_state['device'] = compute_device if offload_state_to_cpu: inference_state['storage_device'] = torch.device('cpu') else: inference_state['storage_device'] = compute_device inference_state['point_inputs_per_obj'] = {} inference_state['mask_inputs_per_obj'] = {} inference_state['cached_features'] = {} inference_state['constants'] = {} inference_state['obj_id_to_idx'] = OrderedDict() inference_state['obj_idx_to_id'] = OrderedDict() inference_state['obj_ids'] = [] inference_state['output_dict'] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} inference_state['output_dict_per_obj'] = {} inference_state['temp_output_dict_per_obj'] = {} inference_state['consolidated_frame_inds'] = {'cond_frame_outputs': set(), 'non_cond_frame_outputs': set()} inference_state['tracking_has_started'] = False inference_state['frames_already_tracked'] = {} self._get_image_feature(inference_state, frame_idx=0, batch_size=1) return inference_state @classmethod def from_pretrained(cls, model_id: str, **kwargs) -> 'SAM2VideoPredictor': from sam2.build_sam import build_sam2_video_predictor_hf sam_model = build_sam2_video_predictor_hf(model_id, **kwargs) return sam_model def _obj_id_to_idx(self, inference_state, obj_id): obj_idx = inference_state['obj_id_to_idx'].get(obj_id, None) if obj_idx is not None: return obj_idx allow_new_object = not inference_state['tracking_has_started'] if allow_new_object: obj_idx = len(inference_state['obj_id_to_idx']) inference_state['obj_id_to_idx'][obj_id] = obj_idx inference_state['obj_idx_to_id'][obj_idx] = obj_id inference_state['obj_ids'] = list(inference_state['obj_id_to_idx']) inference_state['point_inputs_per_obj'][obj_idx] = {} inference_state['mask_inputs_per_obj'][obj_idx] = {} inference_state['output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} inference_state['temp_output_dict_per_obj'][obj_idx] = {'cond_frame_outputs': {}, 'non_cond_frame_outputs': {}} return obj_idx else: raise RuntimeError(f"Cannot add new object id {obj_id} after tracking starts. All existing object ids: {inference_state['obj_ids']}. Please call 'reset_state' to restart from scratch.") def _obj_idx_to_id(self, inference_state, obj_idx): return inference_state['obj_idx_to_id'][obj_idx] def _get_obj_num(self, inference_state): return len(inference_state['obj_idx_to_id']) @torch.inference_mode() def add_new_points_or_box(self, inference_state, frame_idx, obj_id, points=None, labels=None, clear_old_points=True, normalize_coords=True, box=None): obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx] mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx] if (points is not None) != (labels is not None): raise ValueError('points and labels must be provided together') if points is None and box is None: raise ValueError('at least one of points or box must be provided as input') if points is None: points = torch.zeros(0, 2, dtype=torch.float32) elif not isinstance(points, torch.Tensor): points = torch.tensor(points, dtype=torch.float32) if labels is None: labels = torch.zeros(0, dtype=torch.int32) elif not isinstance(labels, torch.Tensor): labels = torch.tensor(labels, dtype=torch.int32) if points.dim() == 2: points = points.unsqueeze(0) if labels.dim() == 1: labels = labels.unsqueeze(0) if box is not None: if not clear_old_points: raise ValueError('cannot add box without clearing old points, since box prompt must be provided before any point prompt (please use clear_old_points=True instead)') if inference_state['tracking_has_started']: warnings.warn("You are adding a box after tracking starts. SAM 2 may not always be able to incorporate a box prompt for *refinement*. If you intend to use box prompt as an *initial* input before tracking, please call 'reset_state' on the inference state to restart from scratch.", category=UserWarning, stacklevel=2) if not isinstance(box, torch.Tensor): box = torch.tensor(box, dtype=torch.float32, device=points.device) box_coords = box.reshape(1, 2, 2) box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device) box_labels = box_labels.reshape(1, 2) points = torch.cat([box_coords, points], dim=1) labels = torch.cat([box_labels, labels], dim=1) if normalize_coords: video_H = inference_state['video_height'] video_W = inference_state['video_width'] points = points / torch.tensor([video_W, video_H]).to(points.device) points = points * self.image_size points = points.to(inference_state['device']) labels = labels.to(inference_state['device']) if not clear_old_points: point_inputs = point_inputs_per_frame.get(frame_idx, None) else: point_inputs = None point_inputs = concat_points(point_inputs, points, labels) point_inputs_per_frame[frame_idx] = point_inputs mask_inputs_per_frame.pop(frame_idx, None) is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked'] if is_init_cond_frame: reverse = False else: reverse = inference_state['frames_already_tracked'][frame_idx]['reverse'] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' prev_sam_mask_logits = None prev_out = obj_temp_output_dict[storage_key].get(frame_idx) if prev_out is None: prev_out = obj_output_dict['cond_frame_outputs'].get(frame_idx) if prev_out is None: prev_out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx) if prev_out is not None and prev_out['pred_masks'] is not None: device = inference_state['device'] prev_sam_mask_logits = prev_out['pred_masks'].to(device, non_blocking=True) prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=point_inputs, mask_inputs=None, reverse=reverse, run_mem_encoder=False, prev_sam_mask_logits=prev_sam_mask_logits) obj_temp_output_dict[storage_key][frame_idx] = current_out obj_ids = inference_state['obj_ids'] consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True) (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res']) return (frame_idx, obj_ids, video_res_masks) def add_new_points(self, *args, **kwargs): return self.add_new_points_or_box(*args, **kwargs) @torch.inference_mode() def add_new_mask(self, inference_state, frame_idx, obj_id, mask): obj_idx = self._obj_id_to_idx(inference_state, obj_id) point_inputs_per_frame = inference_state['point_inputs_per_obj'][obj_idx] mask_inputs_per_frame = inference_state['mask_inputs_per_obj'][obj_idx] if not isinstance(mask, torch.Tensor): mask = torch.tensor(mask, dtype=torch.bool) assert mask.dim() == 2 (mask_H, mask_W) = mask.shape mask_inputs_orig = mask[None, None] mask_inputs_orig = mask_inputs_orig.float().to(inference_state['device']) if mask_H != self.image_size or mask_W != self.image_size: mask_inputs = torch.nn.functional.interpolate(mask_inputs_orig, size=(self.image_size, self.image_size), align_corners=False, mode='bilinear', antialias=True) mask_inputs = (mask_inputs >= 0.5).float() else: mask_inputs = mask_inputs_orig mask_inputs_per_frame[frame_idx] = mask_inputs point_inputs_per_frame.pop(frame_idx, None) is_init_cond_frame = frame_idx not in inference_state['frames_already_tracked'] if is_init_cond_frame: reverse = False else: reverse = inference_state['frames_already_tracked'][frame_idx]['reverse'] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' (current_out, _) = self._run_single_frame_inference(inference_state=inference_state, output_dict=obj_output_dict, frame_idx=frame_idx, batch_size=1, is_init_cond_frame=is_init_cond_frame, point_inputs=None, mask_inputs=mask_inputs, reverse=reverse, run_mem_encoder=False) obj_temp_output_dict[storage_key][frame_idx] = current_out obj_ids = inference_state['obj_ids'] consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=False, consolidate_at_video_res=True) (_, video_res_masks) = self._get_orig_video_res_output(inference_state, consolidated_out['pred_masks_video_res']) return (frame_idx, obj_ids, video_res_masks) def _get_orig_video_res_output(self, inference_state, any_res_masks): device = inference_state['device'] video_H = inference_state['video_height'] video_W = inference_state['video_width'] any_res_masks = any_res_masks.to(device, non_blocking=True) if any_res_masks.shape[-2:] == (video_H, video_W): video_res_masks = any_res_masks else: video_res_masks = torch.nn.functional.interpolate(any_res_masks, size=(video_H, video_W), mode='bilinear', align_corners=False) if self.non_overlap_masks: video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) return (any_res_masks, video_res_masks) def _consolidate_temp_output_across_obj(self, inference_state, frame_idx, is_cond, run_mem_encoder, consolidate_at_video_res=False): batch_size = self._get_obj_num(inference_state) storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' if consolidate_at_video_res: assert not run_mem_encoder, 'memory encoder cannot run at video resolution' consolidated_H = inference_state['video_height'] consolidated_W = inference_state['video_width'] consolidated_mask_key = 'pred_masks_video_res' else: consolidated_H = consolidated_W = self.image_size // 4 consolidated_mask_key = 'pred_masks' consolidated_out = {'maskmem_features': None, 'maskmem_pos_enc': None, consolidated_mask_key: torch.full(size=(batch_size, 1, consolidated_H, consolidated_W), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['storage_device']), 'obj_ptr': torch.full(size=(batch_size, self.hidden_dim), fill_value=NO_OBJ_SCORE, dtype=torch.float32, device=inference_state['device'])} empty_mask_ptr = None for obj_idx in range(batch_size): obj_temp_output_dict = inference_state['temp_output_dict_per_obj'][obj_idx] obj_output_dict = inference_state['output_dict_per_obj'][obj_idx] out = obj_temp_output_dict[storage_key].get(frame_idx, None) if out is None: out = obj_output_dict['cond_frame_outputs'].get(frame_idx, None) if out is None: out = obj_output_dict['non_cond_frame_outputs'].get(frame_idx, None) if out is None: if run_mem_encoder: if empty_mask_ptr is None: empty_mask_ptr = self._get_empty_mask_ptr(inference_state, frame_idx) consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = empty_mask_ptr continue obj_mask = out['pred_masks'] consolidated_pred_masks = consolidated_out[consolidated_mask_key] if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: consolidated_pred_masks[obj_idx:obj_idx + 1] = obj_mask else: resized_obj_mask = torch.nn.functional.interpolate(obj_mask, size=consolidated_pred_masks.shape[-2:], mode='bilinear', align_corners=False) consolidated_pred_masks[obj_idx:obj_idx + 1] = resized_obj_mask consolidated_out['obj_ptr'][obj_idx:obj_idx + 1] = out['obj_ptr'] if run_mem_encoder: device = inference_state['device'] high_res_masks = torch.nn.functional.interpolate(consolidated_out['pred_masks'].to(device, non_blocking=True), size=(self.image_size, self.image_size), mode='bilinear', align_corners=False) if self.non_overlap_masks_for_mem_enc: high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) (maskmem_features, maskmem_pos_enc) = self._run_memory_encoder(inference_state=inference_state, frame_idx=frame_idx, batch_size=batch_size, high_res_masks=high_res_masks, is_mask_from_pts=True) consolidated_out['maskmem_features'] = maskmem_features consolidated_out['maskmem_pos_enc'] = maskmem_pos_enc return consolidated_out def _get_empty_mask_ptr(self, inference_state, frame_idx): batch_size = 1 mask_inputs = torch.zeros((batch_size, 1, self.image_size, self.image_size), dtype=torch.float32, device=inference_state['device']) (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=True, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=None, mask_inputs=mask_inputs, output_dict={}, num_frames=inference_state['num_frames'], track_in_reverse=False, run_mem_encoder=False, prev_sam_mask_logits=None) return current_out['obj_ptr'] @torch.inference_mode() def propagate_in_video_preflight(self, inference_state): inference_state['tracking_has_started'] = True batch_size = self._get_obj_num(inference_state) temp_output_dict_per_obj = inference_state['temp_output_dict_per_obj'] output_dict = inference_state['output_dict'] consolidated_frame_inds = inference_state['consolidated_frame_inds'] for is_cond in [False, True]: storage_key = 'cond_frame_outputs' if is_cond else 'non_cond_frame_outputs' temp_frame_inds = set() for obj_temp_output_dict in temp_output_dict_per_obj.values(): temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) consolidated_frame_inds[storage_key].update(temp_frame_inds) for frame_idx in temp_frame_inds: consolidated_out = self._consolidate_temp_output_across_obj(inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True) output_dict[storage_key][frame_idx] = consolidated_out self._add_output_per_object(inference_state, frame_idx, consolidated_out, storage_key) clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1) if clear_non_cond_mem: self._clear_non_cond_mem_around_input(inference_state, frame_idx) for obj_temp_output_dict in temp_output_dict_per_obj.values(): obj_temp_output_dict[storage_key].clear() for frame_idx in output_dict['cond_frame_outputs']: output_dict['non_cond_frame_outputs'].pop(frame_idx, None) for obj_output_dict in inference_state['output_dict_per_obj'].values(): for frame_idx in obj_output_dict['cond_frame_outputs']: obj_output_dict['non_cond_frame_outputs'].pop(frame_idx, None) for frame_idx in consolidated_frame_inds['cond_frame_outputs']: assert frame_idx in output_dict['cond_frame_outputs'] consolidated_frame_inds['non_cond_frame_outputs'].discard(frame_idx) all_consolidated_frame_inds = consolidated_frame_inds['cond_frame_outputs'] | consolidated_frame_inds['non_cond_frame_outputs'] input_frames_inds = set() for point_inputs_per_frame in inference_state['point_inputs_per_obj'].values(): input_frames_inds.update(point_inputs_per_frame.keys()) for mask_inputs_per_frame in inference_state['mask_inputs_per_obj'].values(): input_frames_inds.update(mask_inputs_per_frame.keys()) assert all_consolidated_frame_inds == input_frames_inds @torch.inference_mode() def propagate_in_video(self, inference_state, start_frame_idx=None, max_frame_num_to_track=None, reverse=False): self.propagate_in_video_preflight(inference_state) output_dict = inference_state['output_dict'] consolidated_frame_inds = inference_state['consolidated_frame_inds'] obj_ids = inference_state['obj_ids'] num_frames = inference_state['num_frames'] batch_size = self._get_obj_num(inference_state) if len(output_dict['cond_frame_outputs']) == 0: raise RuntimeError('No points are provided; please add points first') clear_non_cond_mem = self.clear_non_cond_mem_around_input and (self.clear_non_cond_mem_for_multi_obj or batch_size <= 1) if start_frame_idx is None: start_frame_idx = min(output_dict['cond_frame_outputs']) if max_frame_num_to_track is None: max_frame_num_to_track = num_frames if reverse: end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) if start_frame_idx > 0: processing_order = range(start_frame_idx, end_frame_idx - 1, -1) else: processing_order = [] else: end_frame_idx = min(start_frame_idx + max_frame_num_to_track, num_frames - 1) processing_order = range(start_frame_idx, end_frame_idx + 1) for frame_idx in tqdm(processing_order, desc='propagate in video'): if frame_idx in consolidated_frame_inds['cond_frame_outputs']: storage_key = 'cond_frame_outputs' current_out = output_dict[storage_key][frame_idx] pred_masks = current_out['pred_masks'] if clear_non_cond_mem: self._clear_non_cond_mem_around_input(inference_state, frame_idx) elif frame_idx in consolidated_frame_inds['non_cond_frame_outputs']: storage_key = 'non_cond_frame_outputs' current_out = output_dict[storage_key][frame_idx] pred_masks = current_out['pred_masks'] else: storage_key = 'non_cond_frame_outputs' (current_out, pred_masks) = self._run_single_frame_inference(inference_state=inference_state, output_dict=output_dict, frame_idx=frame_idx, batch_size=batch_size, is_init_cond_frame=False, point_inputs=None, mask_inputs=None, reverse=reverse, run_mem_encoder=True) output_dict[storage_key][frame_idx] = current_out self._add_output_per_object(inference_state, frame_idx, current_out, storage_key) inference_state['frames_already_tracked'][frame_idx] = {'reverse': reverse} (_, video_res_masks) = self._get_orig_video_res_output(inference_state, pred_masks) yield (frame_idx, obj_ids, video_res_masks) def _add_output_per_object(self, inference_state, frame_idx, current_out, storage_key): maskmem_features = current_out['maskmem_features'] assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) maskmem_pos_enc = current_out['maskmem_pos_enc'] assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) output_dict_per_obj = inference_state['output_dict_per_obj'] for (obj_idx, obj_output_dict) in output_dict_per_obj.items(): obj_slice = slice(obj_idx, obj_idx + 1) obj_out = {'maskmem_features': None, 'maskmem_pos_enc': None, 'pred_masks': current_out['pred_masks'][obj_slice], 'obj_ptr': current_out['obj_ptr'][obj_slice]} if maskmem_features is not None: obj_out['maskmem_features'] = maskmem_features[obj_slice] if maskmem_pos_enc is not None: obj_out['maskmem_pos_enc'] = [x[obj_slice] for x in maskmem_pos_enc] obj_output_dict[storage_key][frame_idx] = obj_out @torch.inference_mode() def reset_state(self, inference_state): self._reset_tracking_results(inference_state) inference_state['obj_id_to_idx'].clear() inference_state['obj_idx_to_id'].clear() inference_state['obj_ids'].clear() inference_state['point_inputs_per_obj'].clear() inference_state['mask_inputs_per_obj'].clear() inference_state['output_dict_per_obj'].clear() inference_state['temp_output_dict_per_obj'].clear() def _reset_tracking_results(self, inference_state): for v in inference_state['point_inputs_per_obj'].values(): v.clear() for v in inference_state['mask_inputs_per_obj'].values(): v.clear() for v in inference_state['output_dict_per_obj'].values(): v['cond_frame_outputs'].clear() v['non_cond_frame_outputs'].clear() for v in inference_state['temp_output_dict_per_obj'].values(): v['cond_frame_outputs'].clear() v['non_cond_frame_outputs'].clear() inference_state['output_dict']['cond_frame_outputs'].clear() inference_state['output_dict']['non_cond_frame_outputs'].clear() inference_state['consolidated_frame_inds']['cond_frame_outputs'].clear() inference_state['consolidated_frame_inds']['non_cond_frame_outputs'].clear() inference_state['tracking_has_started'] = False inference_state['frames_already_tracked'].clear() def _get_image_feature(self, inference_state, frame_idx, batch_size): (image, backbone_out) = inference_state['cached_features'].get(frame_idx, (None, None)) if backbone_out is None: device = inference_state['device'] image = inference_state['images'][frame_idx].to(device).float().unsqueeze(0) backbone_out = self.forward_image(image) inference_state['cached_features'] = {frame_idx: (image, backbone_out)} expanded_image = image.expand(batch_size, -1, -1, -1) expanded_backbone_out = {'backbone_fpn': backbone_out['backbone_fpn'].copy(), 'vision_pos_enc': backbone_out['vision_pos_enc'].copy()} for (i, feat) in enumerate(expanded_backbone_out['backbone_fpn']): expanded_backbone_out['backbone_fpn'][i] = feat.expand(batch_size, -1, -1, -1) for (i, pos) in enumerate(expanded_backbone_out['vision_pos_enc']): pos = pos.expand(batch_size, -1, -1, -1) expanded_backbone_out['vision_pos_enc'][i] = pos features = self._prepare_backbone_features(expanded_backbone_out) features = (expanded_image,) + features return features def _run_single_frame_inference(self, inference_state, output_dict, frame_idx, batch_size, is_init_cond_frame, point_inputs, mask_inputs, reverse, run_mem_encoder, prev_sam_mask_logits=None): (_, _, current_vision_feats, current_vision_pos_embeds, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) assert point_inputs is None or mask_inputs is None current_out = self.track_step(frame_idx=frame_idx, is_init_cond_frame=is_init_cond_frame, current_vision_feats=current_vision_feats, current_vision_pos_embeds=current_vision_pos_embeds, feat_sizes=feat_sizes, point_inputs=point_inputs, mask_inputs=mask_inputs, output_dict=output_dict, num_frames=inference_state['num_frames'], track_in_reverse=reverse, run_mem_encoder=run_mem_encoder, prev_sam_mask_logits=prev_sam_mask_logits) storage_device = inference_state['storage_device'] maskmem_features = current_out['maskmem_features'] if maskmem_features is not None: maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) pred_masks_gpu = current_out['pred_masks'] if self.fill_hole_area > 0: pred_masks_gpu = fill_holes_in_mask_scores(pred_masks_gpu, self.fill_hole_area) pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) obj_ptr = current_out['obj_ptr'] compact_current_out = {'maskmem_features': maskmem_features, 'maskmem_pos_enc': maskmem_pos_enc, 'pred_masks': pred_masks, 'obj_ptr': obj_ptr} return (compact_current_out, pred_masks_gpu) def _run_memory_encoder(self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts): (_, _, current_vision_feats, _, feat_sizes) = self._get_image_feature(inference_state, frame_idx, batch_size) (maskmem_features, maskmem_pos_enc) = self._encode_new_memory(current_vision_feats=current_vision_feats, feat_sizes=feat_sizes, pred_masks_high_res=high_res_masks, is_mask_from_pts=is_mask_from_pts) storage_device = inference_state['storage_device'] maskmem_features = maskmem_features.to(torch.bfloat16) maskmem_features = maskmem_features.to(storage_device, non_blocking=True) maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, {'maskmem_pos_enc': maskmem_pos_enc}) return (maskmem_features, maskmem_pos_enc) def _get_maskmem_pos_enc(self, inference_state, current_out): model_constants = inference_state['constants'] out_maskmem_pos_enc = current_out['maskmem_pos_enc'] if out_maskmem_pos_enc is not None: if 'maskmem_pos_enc' not in model_constants: assert isinstance(out_maskmem_pos_enc, list) maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] model_constants['maskmem_pos_enc'] = maskmem_pos_enc else: maskmem_pos_enc = model_constants['maskmem_pos_enc'] batch_size = out_maskmem_pos_enc[0].size(0) expanded_maskmem_pos_enc = [x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc] else: expanded_maskmem_pos_enc = None return expanded_maskmem_pos_enc def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): r = self.memory_temporal_stride_for_eval frame_idx_begin = frame_idx - r * self.num_maskmem frame_idx_end = frame_idx + r * self.num_maskmem output_dict = inference_state['output_dict'] non_cond_frame_outputs = output_dict['non_cond_frame_outputs'] for t in range(frame_idx_begin, frame_idx_end + 1): non_cond_frame_outputs.pop(t, None) for obj_output_dict in inference_state['output_dict_per_obj'].values(): obj_output_dict['non_cond_frame_outputs'].pop(t, None) # File: segment-anything-2-coreml-conversion/sav_dataset/sav_evaluator.py from argparse import ArgumentParser from utils.sav_benchmark import benchmark '' parser = ArgumentParser() parser.add_argument('--gt_root', required=True, help="Path to the GT folder. For SA-V, it's sav_val/Annotations_6fps or sav_test/Annotations_6fps") parser.add_argument('--pred_root', required=True, help='Path to a folder containing folders of masks to be evaluated, with exactly the same structure as gt_root') parser.add_argument('-n', '--num_processes', default=16, type=int, help='Number of concurrent processes') parser.add_argument('-s', '--strict', help='Make sure every video in the gt_root folder has a corresponding video in the prediction', action='store_true') parser.add_argument('-q', '--quiet', help='Quietly run evaluation without printing the information out', action='store_true') parser.add_argument('--do_not_skip_first_and_last_frame', help="In SA-V val and test, we skip the first and the last annotated frames in evaluation. Set this to true for evaluation on settings that doesn't skip first and last frames", action='store_true') if __name__ == '__main__': args = parser.parse_args() benchmark([args.gt_root], [args.pred_root], args.strict, args.num_processes, verbose=not args.quiet, skip_first_and_last=not args.do_not_skip_first_and_last_frame) # File: segment-anything-2-coreml-conversion/tools/vos_inference.py import argparse import os import numpy as np import torch from PIL import Image from sam2.build_sam import build_sam2_video_predictor DAVIS_PALETTE = b'\x00\x00\x00\x80\x00\x00\x00\x80\x00\x80\x80\x00\x00\x00\x80\x80\x00\x80\x00\x80\x80\x80\x80\x80@\x00\x00\xc0\x00\x00@\x80\x00\xc0\x80\x00@\x00\x80\xc0\x00\x80@\x80\x80\xc0\x80\x80\x00@\x00\x80@\x00\x00\xc0\x00\x80\xc0\x00\x00@\x80\x80@\x80\x00\xc0\x80\x80\xc0\x80@@\x00\xc0@\x00@\xc0\x00\xc0\xc0\x00@@\x80\xc0@\x80@\xc0\x80\xc0\xc0\x80\x00\x00@\x80\x00@\x00\x80@\x80\x80@\x00\x00\xc0\x80\x00\xc0\x00\x80\xc0\x80\x80\xc0@\x00@\xc0\x00@@\x80@\xc0\x80@@\x00\xc0\xc0\x00\xc0@\x80\xc0\xc0\x80\xc0\x00@@\x80@@\x00\xc0@\x80\xc0@\x00@\xc0\x80@\xc0\x00\xc0\xc0\x80\xc0\xc0@@@\xc0@@@\xc0@\xc0\xc0@@@\xc0\xc0@\xc0@\xc0\xc0\xc0\xc0\xc0 \x00\x00\xa0\x00\x00 \x80\x00\xa0\x80\x00 \x00\x80\xa0\x00\x80 \x80\x80\xa0\x80\x80`\x00\x00\xe0\x00\x00`\x80\x00\xe0\x80\x00`\x00\x80\xe0\x00\x80`\x80\x80\xe0\x80\x80 @\x00\xa0@\x00 \xc0\x00\xa0\xc0\x00 @\x80\xa0@\x80 \xc0\x80\xa0\xc0\x80`@\x00\xe0@\x00`\xc0\x00\xe0\xc0\x00`@\x80\xe0@\x80`\xc0\x80\xe0\xc0\x80 \x00@\xa0\x00@ \x80@\xa0\x80@ \x00\xc0\xa0\x00\xc0 \x80\xc0\xa0\x80\xc0`\x00@\xe0\x00@`\x80@\xe0\x80@`\x00\xc0\xe0\x00\xc0`\x80\xc0\xe0\x80\xc0 @@\xa0@@ \xc0@\xa0\xc0@ @\xc0\xa0@\xc0 \xc0\xc0\xa0\xc0\xc0`@@\xe0@@`\xc0@\xe0\xc0@`@\xc0\xe0@\xc0`\xc0\xc0\xe0\xc0\xc0\x00 \x00\x80 \x00\x00\xa0\x00\x80\xa0\x00\x00 \x80\x80 \x80\x00\xa0\x80\x80\xa0\x80@ \x00\xc0 \x00@\xa0\x00\xc0\xa0\x00@ \x80\xc0 \x80@\xa0\x80\xc0\xa0\x80\x00`\x00\x80`\x00\x00\xe0\x00\x80\xe0\x00\x00`\x80\x80`\x80\x00\xe0\x80\x80\xe0\x80@`\x00\xc0`\x00@\xe0\x00\xc0\xe0\x00@`\x80\xc0`\x80@\xe0\x80\xc0\xe0\x80\x00 @\x80 @\x00\xa0@\x80\xa0@\x00 \xc0\x80 \xc0\x00\xa0\xc0\x80\xa0\xc0@ @\xc0 @@\xa0@\xc0\xa0@@ \xc0\xc0 \xc0@\xa0\xc0\xc0\xa0\xc0\x00`@\x80`@\x00\xe0@\x80\xe0@\x00`\xc0\x80`\xc0\x00\xe0\xc0\x80\xe0\xc0@`@\xc0`@@\xe0@\xc0\xe0@@`\xc0\xc0`\xc0@\xe0\xc0\xc0\xe0\xc0 \x00\xa0 \x00 \xa0\x00\xa0\xa0\x00 \x80\xa0 \x80 \xa0\x80\xa0\xa0\x80` \x00\xe0 \x00`\xa0\x00\xe0\xa0\x00` \x80\xe0 \x80`\xa0\x80\xe0\xa0\x80 `\x00\xa0`\x00 \xe0\x00\xa0\xe0\x00 `\x80\xa0`\x80 \xe0\x80\xa0\xe0\x80``\x00\xe0`\x00`\xe0\x00\xe0\xe0\x00``\x80\xe0`\x80`\xe0\x80\xe0\xe0\x80 @\xa0 @ \xa0@\xa0\xa0@ \xc0\xa0 \xc0 \xa0\xc0\xa0\xa0\xc0` @\xe0 @`\xa0@\xe0\xa0@` \xc0\xe0 \xc0`\xa0\xc0\xe0\xa0\xc0 `@\xa0`@ \xe0@\xa0\xe0@ `\xc0\xa0`\xc0 \xe0\xc0\xa0\xe0\xc0``@\xe0`@`\xe0@\xe0\xe0@``\xc0\xe0`\xc0`\xe0\xc0\xe0\xe0\xc0' def load_ann_png(path): mask = Image.open(path) palette = mask.getpalette() mask = np.array(mask).astype(np.uint8) return (mask, palette) def save_ann_png(path, mask, palette): assert mask.dtype == np.uint8 assert mask.ndim == 2 output_mask = Image.fromarray(mask) output_mask.putpalette(palette) output_mask.save(path) def get_per_obj_mask(mask): object_ids = np.unique(mask) object_ids = object_ids[object_ids > 0].tolist() per_obj_mask = {object_id: mask == object_id for object_id in object_ids} return per_obj_mask def put_per_obj_mask(per_obj_mask, height, width): mask = np.zeros((height, width), dtype=np.uint8) object_ids = sorted(per_obj_mask)[::-1] for object_id in object_ids: object_mask = per_obj_mask[object_id] object_mask = object_mask.reshape(height, width) mask[object_mask] = object_id return mask def load_masks_from_dir(input_mask_dir, video_name, frame_name, per_obj_png_file): if not per_obj_png_file: input_mask_path = os.path.join(input_mask_dir, video_name, f'{frame_name}.png') (input_mask, input_palette) = load_ann_png(input_mask_path) per_obj_input_mask = get_per_obj_mask(input_mask) else: per_obj_input_mask = {} for object_name in os.listdir(os.path.join(input_mask_dir, video_name)): object_id = int(object_name) input_mask_path = os.path.join(input_mask_dir, video_name, object_name, f'{frame_name}.png') (input_mask, input_palette) = load_ann_png(input_mask_path) per_obj_input_mask[object_id] = input_mask > 0 return (per_obj_input_mask, input_palette) def save_masks_to_dir(output_mask_dir, video_name, frame_name, per_obj_output_mask, height, width, per_obj_png_file, output_palette): os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) if not per_obj_png_file: output_mask = put_per_obj_mask(per_obj_output_mask, height, width) output_mask_path = os.path.join(output_mask_dir, video_name, f'{frame_name}.png') save_ann_png(output_mask_path, output_mask, output_palette) else: for (object_id, object_mask) in per_obj_output_mask.items(): object_name = f'{object_id:03d}' os.makedirs(os.path.join(output_mask_dir, video_name, object_name), exist_ok=True) output_mask = object_mask.reshape(height, width).astype(np.uint8) output_mask_path = os.path.join(output_mask_dir, video_name, object_name, f'{frame_name}.png') save_ann_png(output_mask_path, output_mask, output_palette) @torch.inference_mode() @torch.autocast(device_type='cuda', dtype=torch.bfloat16) def vos_inference(predictor, base_video_dir, input_mask_dir, output_mask_dir, video_name, score_thresh=0.0, use_all_masks=False, per_obj_png_file=False): video_dir = os.path.join(base_video_dir, video_name) frame_names = [os.path.splitext(p)[0] for p in os.listdir(video_dir) if os.path.splitext(p)[-1] in ['.jpg', '.jpeg', '.JPG', '.JPEG']] frame_names.sort(key=lambda p: int(os.path.splitext(p)[0])) inference_state = predictor.init_state(video_path=video_dir, async_loading_frames=False) height = inference_state['video_height'] width = inference_state['video_width'] input_palette = None if not use_all_masks: input_frame_inds = [0] else: if not per_obj_png_file: input_frame_inds = [idx for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, f'{name}.png'))] else: input_frame_inds = [idx for object_name in os.listdir(os.path.join(input_mask_dir, video_name)) for (idx, name) in enumerate(frame_names) if os.path.exists(os.path.join(input_mask_dir, video_name, object_name, f'{name}.png'))] input_frame_inds = sorted(set(input_frame_inds)) for input_frame_idx in input_frame_inds: (per_obj_input_mask, input_palette) = load_masks_from_dir(input_mask_dir=input_mask_dir, video_name=video_name, frame_name=frame_names[input_frame_idx], per_obj_png_file=per_obj_png_file) for (object_id, object_mask) in per_obj_input_mask.items(): predictor.add_new_mask(inference_state=inference_state, frame_idx=input_frame_idx, obj_id=object_id, mask=object_mask) os.makedirs(os.path.join(output_mask_dir, video_name), exist_ok=True) output_palette = input_palette or DAVIS_PALETTE video_segments = {} for (out_frame_idx, out_obj_ids, out_mask_logits) in predictor.propagate_in_video(inference_state): per_obj_output_mask = {out_obj_id: (out_mask_logits[i] > score_thresh).cpu().numpy() for (i, out_obj_id) in enumerate(out_obj_ids)} video_segments[out_frame_idx] = per_obj_output_mask for (out_frame_idx, per_obj_output_mask) in video_segments.items(): save_masks_to_dir(output_mask_dir=output_mask_dir, video_name=video_name, frame_name=frame_names[out_frame_idx], per_obj_output_mask=per_obj_output_mask, height=height, width=width, per_obj_png_file=per_obj_png_file, output_palette=output_palette) def main(): parser = argparse.ArgumentParser() parser.add_argument('--sam2_cfg', type=str, default='sam2_hiera_b+.yaml', help='SAM 2 model configuration file') parser.add_argument('--sam2_checkpoint', type=str, default='./checkpoints/sam2_hiera_b+.pt', help='path to the SAM 2 model checkpoint') parser.add_argument('--base_video_dir', type=str, required=True, help='directory containing videos (as JPEG files) to run VOS prediction on') parser.add_argument('--input_mask_dir', type=str, required=True, help='directory containing input masks (as PNG files) of each video') parser.add_argument('--video_list_file', type=str, default=None, help='text file containing the list of video names to run VOS prediction on') parser.add_argument('--output_mask_dir', type=str, required=True, help='directory to save the output masks (as PNG files)') parser.add_argument('--score_thresh', type=float, default=0.0, help='threshold for the output mask logits (default: 0.0)') parser.add_argument('--use_all_masks', action='store_true', help="whether to use all available PNG files in input_mask_dir (default without this flag: just the first PNG file as input to the SAM 2 model; usually we don't need this flag, since semi-supervised VOS evaluation usually takes input from the first frame only)") parser.add_argument('--per_obj_png_file', action='store_true', help='whether use separate per-object PNG files for input and output masks (default without this flag: all object masks are packed into a single PNG file on each frame following DAVIS format; note that the SA-V dataset stores each object mask as an individual PNG file and requires this flag)') parser.add_argument('--apply_postprocessing', action='store_true', help="whether to apply postprocessing (e.g. hole-filling) to the output masks (we don't apply such post-processing in the SAM 2 model evaluation)") args = parser.parse_args() hydra_overrides_extra = ['++model.non_overlap_masks=' + ('false' if args.per_obj_png_file else 'true')] predictor = build_sam2_video_predictor(config_file=args.sam2_cfg, ckpt_path=args.sam2_checkpoint, apply_postprocessing=args.apply_postprocessing, hydra_overrides_extra=hydra_overrides_extra) if args.use_all_masks: print('using all available masks in input_mask_dir as input to the SAM 2 model') else: print("using only the first frame's mask in input_mask_dir as input to the SAM 2 model") if args.video_list_file is not None: with open(args.video_list_file, 'r') as f: video_names = [v.strip() for v in f.readlines()] else: video_names = [p for p in os.listdir(args.base_video_dir) if os.path.isdir(os.path.join(args.base_video_dir, p))] print(f'running VOS prediction on {len(video_names)} videos:\n{video_names}') for (n_video, video_name) in enumerate(video_names): print(f'\n{n_video + 1}/{len(video_names)} - running on {video_name}') vos_inference(predictor=predictor, base_video_dir=args.base_video_dir, input_mask_dir=args.input_mask_dir, output_mask_dir=args.output_mask_dir, video_name=video_name, score_thresh=args.score_thresh, use_all_masks=args.use_all_masks, per_obj_png_file=args.per_obj_png_file) print(f'completed VOS prediction on {len(video_names)} videos -- output masks saved to {args.output_mask_dir}') if __name__ == '__main__': main()