"""XL-Sum abstractive summarization dataset.""" import json import os import datasets _CITATION = """\ @inproceedings{hasan-etal-2021-xl, title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages", author = "Hasan, Tahmid and Bhattacharjee, Abhik and Islam, Md. Saiful and Mubasshir, Kazi and Li, Yuan-Fang and Kang, Yong-Bin and Rahman, M. Sohel and Shahriyar, Rifat", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.413", pages = "4693--4703", } """ _DESCRIPTION = """\ We present XLSum, a comprehensive and diverse dataset comprising 1.35 million professionally annotated article-summary pairs from BBC, extracted using a set of carefully designed heuristics. The dataset covers 45 languages ranging from low to high-resource, for many of which no public dataset is currently available. XL-Sum is highly abstractive, concise, and of high quality, as indicated by human and intrinsic evaluation. """ _HOMEPAGE = "https://github.com/csebuetnlp/xl-sum" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)" _DATA_PATH = "data/{}_XLSum_v{}.tar.bz2" # relative path to the data _LANGUAGES = [ "oromo", "french", "amharic", "arabic", "azerbaijani", "bengali", "burmese", "chinese_simplified", "chinese_traditional", "welsh", "english", "kirundi", "gujarati", "hausa", "hindi", "igbo", "indonesian", "japanese", "korean", "kyrgyz", "marathi", "spanish", "scottish_gaelic", "nepali", "pashto", "persian", "pidgin", "portuguese", "punjabi", "russian", "serbian_cyrillic", "serbian_latin", "sinhala", "somali", "swahili", "tamil", "telugu", "thai", "tigrinya", "turkish", "ukrainian", "urdu", "uzbek", "vietnamese", "yoruba", ] class Xlsum(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("2.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="{}".format(lang), version=datasets.Version("2.0.0") ) for lang in _LANGUAGES ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "url": datasets.Value("string"), "title": datasets.Value("string"), "summary": datasets.Value("string"), "text": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, version=self.VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" lang = str(self.config.name) data_path = _DATA_PATH.format(lang, self.VERSION.version_str[:-2]) # we download and use dl_manager.iter_archive to be able to load the dataset in streaming mode archive = dl_manager.download(data_path) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": lang + "_train.jsonl, "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": lang + "_test.jsonl", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": lang + "_val.jsonl", "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, filepath, files): """Yields examples as (key, example) tuples.""" for path, f in files: if path == filepath: for idx_, row in enumerate(f): data = json.loads(row) yield idx_, { "id": data["id"], "url": data["url"], "title": data["title"], "summary": data["summary"], "text": data["text"], } break