import os from modules.processing import StableDiffusionProcessingImg2Img from scripts.faceswap import FaceSwapScript, get_models from utils import batch_tensor_to_pil, batched_pil_to_tensor, tensor_to_pil from console_log_patch import apply_logging_patch def model_names(): models = get_models() return {os.path.basename(x): x for x in models} class reactor: @classmethod def INPUT_TYPES(s): return { "required": { "input_image": ("IMAGE",), "reference_image": ("IMAGE",), "swap_model": (list(model_names().keys()),), "reference_faces_index": ("STRING", {"default": "0"}), "input_faces_index": ("STRING", {"default": "0"}), "console_log_level": ([0, 1, 2], {"default": 1}), } } RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "image/postprocessing" def execute(self, input_image, reference_image, swap_model, reference_faces_index, input_faces_index, console_log_level): apply_logging_patch(console_log_level) script = FaceSwapScript() pil_images = batch_tensor_to_pil(input_image) source = tensor_to_pil(reference_image) p = StableDiffusionProcessingImg2Img(pil_images) script.process( p=p, img=source, enable=True, source_faces_index=reference_faces_index, faces_index=input_faces_index, model=swap_model, face_restorer_name='None', face_restorer_visibility=1, restore_first=True,upscaler_name=None, upscaler_scale=1, upscaler_visibility=1, swap_in_source=True, swap_in_generated=True ) result = batched_pil_to_tensor(p.init_images) return (result,) NODE_CLASS_MAPPINGS = { "ReActorFaceSwap": reactor, } NODE_DISPLAY_NAME_MAPPINGS = { "ReActorFaceSwap": "ReActor - Fast Face Swap", }