import os.path as osp import glob import logging import insightface from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession from insightface.model_zoo.retinaface import RetinaFace from insightface.model_zoo.landmark import Landmark from insightface.model_zoo.attribute import Attribute from insightface.model_zoo.inswapper import INSwapper from insightface.model_zoo.arcface_onnx import ArcFaceONNX from insightface.app import FaceAnalysis from insightface.utils import DEFAULT_MP_NAME, ensure_available from insightface.model_zoo import model_zoo import onnxruntime import onnx from onnx import numpy_helper from scripts.logger import logger def patched_get_model(self, **kwargs): session = PickableInferenceSession(self.onnx_file, **kwargs) inputs = session.get_inputs() input_cfg = inputs[0] input_shape = input_cfg.shape outputs = session.get_outputs() if len(outputs) >= 5: return RetinaFace(model_file=self.onnx_file, session=session) elif input_shape[2] == 192 and input_shape[3] == 192: return Landmark(model_file=self.onnx_file, session=session) elif input_shape[2] == 96 and input_shape[3] == 96: return Attribute(model_file=self.onnx_file, session=session) elif len(inputs) == 2 and input_shape[2] == 128 and input_shape[3] == 128: return INSwapper(model_file=self.onnx_file, session=session) elif input_shape[2] == input_shape[3] and input_shape[2] >= 112 and input_shape[2] % 16 == 0: return ArcFaceONNX(model_file=self.onnx_file, session=session) else: return None def patched_faceanalysis_init(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs): onnxruntime.set_default_logger_severity(3) self.models = {} self.model_dir = ensure_available('models', name, root=root) onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx')) onnx_files = sorted(onnx_files) for onnx_file in onnx_files: model = model_zoo.get_model(onnx_file, **kwargs) if model is None: print('model not recognized:', onnx_file) elif allowed_modules is not None and model.taskname not in allowed_modules: print('model ignore:', onnx_file, model.taskname) del model elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules): self.models[model.taskname] = model else: print('duplicated model task type, ignore:', onnx_file, model.taskname) del model assert 'detection' in self.models self.det_model = self.models['detection'] def patched_faceanalysis_prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)): self.det_thresh = det_thresh assert det_size is not None self.det_size = det_size for taskname, model in self.models.items(): if taskname == 'detection': model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh) else: model.prepare(ctx_id) def patched_inswapper_init(self, model_file=None, session=None): self.model_file = model_file self.session = session model = onnx.load(self.model_file) graph = model.graph self.emap = numpy_helper.to_array(graph.initializer[-1]) self.input_mean = 0.0 self.input_std = 255.0 if self.session is None: self.session = onnxruntime.InferenceSession(self.model_file, None) inputs = self.session.get_inputs() self.input_names = [] for inp in inputs: self.input_names.append(inp.name) outputs = self.session.get_outputs() output_names = [] for out in outputs: output_names.append(out.name) self.output_names = output_names assert len(self.output_names) == 1 input_cfg = inputs[0] input_shape = input_cfg.shape self.input_shape = input_shape self.input_size = tuple(input_shape[2:4][::-1]) def patch_insightface(get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init): insightface.model_zoo.model_zoo.ModelRouter.get_model = get_model insightface.app.FaceAnalysis.__init__ = faceanalysis_init insightface.app.FaceAnalysis.prepare = faceanalysis_prepare insightface.model_zoo.inswapper.INSwapper.__init__ = inswapper_init original_functions = [ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__] patched_functions = [patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init] def apply_logging_patch(console_log_level): if console_log_level == 0: patch_insightface(*patched_functions) logger.setLevel(logging.WARNING) elif console_log_level == 1: patch_insightface(*patched_functions) logger.setLevel(logging.INFO) elif console_log_level == 2: patch_insightface(*original_functions) logger.setLevel(logging.INFO)