import os import torch from torch import nn from copy import deepcopy import pathlib from custom_nodes.facerestore.facelib.utils import load_file_from_url from custom_nodes.facerestore.facelib.utils import download_pretrained_models from custom_nodes.facerestore.facelib.detection.yolov5face.models.common import Conv from .retinaface.retinaface import RetinaFace from .yolov5face.face_detector import YoloDetector def init_detection_model(model_name, half=False, device='cuda'): if 'retinaface' in model_name: model = init_retinaface_model(model_name, half, device) elif 'YOLOv5' in model_name: model = init_yolov5face_model(model_name, device) else: raise NotImplementedError(f'{model_name} is not implemented.') return model def init_retinaface_model(model_name, half=False, device='cuda'): if model_name == 'retinaface_resnet50': model = RetinaFace(network_name='resnet50', half=half) model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' elif model_name == 'retinaface_mobile0.25': model = RetinaFace(network_name='mobile0.25', half=half) model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' else: raise NotImplementedError(f'{model_name} is not implemented.') model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) load_net = torch.load(model_path, map_location=lambda storage, loc: storage) # remove unnecessary 'module.' for k, v in deepcopy(load_net).items(): if k.startswith('module.'): load_net[k[7:]] = v load_net.pop(k) model.load_state_dict(load_net, strict=True) model.eval() model = model.to(device) return model def init_yolov5face_model(model_name, device='cuda'): current_dir = str(pathlib.Path(__file__).parent.resolve()) if model_name == 'YOLOv5l': model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5l.yaml', device=device) model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth' elif model_name == 'YOLOv5n': model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5n.yaml', device=device) model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth' else: raise NotImplementedError(f'{model_name} is not implemented.') model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) load_net = torch.load(model_path, map_location=lambda storage, loc: storage) model.detector.load_state_dict(load_net, strict=True) model.detector.eval() model.detector = model.detector.to(device).float() for m in model.detector.modules(): if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: m.inplace = True # pytorch 1.7.0 compatibility elif isinstance(m, Conv): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility return model # Download from Google Drive # def init_yolov5face_model(model_name, device='cuda'): # if model_name == 'YOLOv5l': # model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5l.yaml', device=device) # f_id = {'yolov5l-face.pth': '131578zMA6B2x8VQHyHfa6GEPtulMCNzV'} # elif model_name == 'YOLOv5n': # model = YoloDetector(config_name='facelib/detection/yolov5face/models/yolov5n.yaml', device=device) # f_id = {'yolov5n-face.pth': '1fhcpFvWZqghpGXjYPIne2sw1Fy4yhw6o'} # else: # raise NotImplementedError(f'{model_name} is not implemented.') # model_path = os.path.join('../../models/facedetection', list(f_id.keys())[0]) # if not os.path.exists(model_path): # download_pretrained_models(file_ids=f_id, save_path_root='../../models/facedetection') # load_net = torch.load(model_path, map_location=lambda storage, loc: storage) # model.detector.load_state_dict(load_net, strict=True) # model.detector.eval() # model.detector = model.detector.to(device).float() # for m in model.detector.modules(): # if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: # m.inplace = True # pytorch 1.7.0 compatibility # elif isinstance(m, Conv): # m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility # return model