import torch from safetensors.torch import save_file, load_file from collections import OrderedDict meta = OrderedDict() meta["format"] ="pt" attn_dict = load_file("/mnt/Train/out/ip_adapter/sd15_bigG/sd15_bigG_000266000.safetensors") state_dict = load_file("/home/jaret/Dev/models/hf/OstrisDiffusionV1/unet/diffusion_pytorch_model.safetensors") attn_list = [] for key, value in state_dict.items(): if "attn1" in key: attn_list.append(key) attn_names = ['down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor', 'down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 'down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor', 'down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor', 'up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor', 'mid_block.attentions.0.transformer_blocks.0.attn2.processor'] adapter_names = [] for i in range(100): if f'te_adapter.adapter_modules.{i}.to_k_adapter.weight' in attn_dict: adapter_names.append(f"te_adapter.adapter_modules.{i}.adapter") for i in range(len(adapter_names)): adapter_name = adapter_names[i] attn_name = attn_names[i] adapter_k_name = adapter_name[:-8] + '.to_k_adapter.weight' adapter_v_name = adapter_name[:-8] + '.to_v_adapter.weight' state_k_name = attn_name.replace(".processor", ".to_k.weight") state_v_name = attn_name.replace(".processor", ".to_v.weight") if adapter_k_name in attn_dict: state_dict[state_k_name] = attn_dict[adapter_k_name] state_dict[state_v_name] = attn_dict[adapter_v_name] else: print("adapter_k_name", adapter_k_name) print("state_k_name", state_k_name) for key, value in state_dict.items(): state_dict[key] = value.cpu().to(torch.float16) save_file(state_dict, "/home/jaret/Dev/models/hf/OstrisDiffusionV1/unet/diffusion_pytorch_model.safetensors", metadata=meta) print("Done")